
University of Malta

Faculty of Information and

Communications Technology

Department of Intelligent Computer Systems

A Controlled Natural Language Interface for
Electronic Contracts

John J. Camilleri

Final Year Project Report
23rd May 2010

Supervisors
Michael Rosner
Gordon J. Pace

Submitted in partial fulfilment of the requirements for the degree of B.Sc. I.T. (Hons.)

A Controlled Natural Language Interface for
Electronic Contracts

John J. Camilleri

Supervised by Michael Rosner and Gordon J. Pace
Submitted in partial fulfilment of the requirements for the degree of B.Sc. I.T. (Hons.)
University of Malta
23rd May 2010

This document was typeset in Palatino using LATEX 2ε

Graphs plotted using MATLAB 2009b

i

for Claudia

ii

Abstract

A contract is an agreement between two or more parties, defining the obligations of
each and the consequences of violating them. Contracts often have ambiguous or even
contradictory interpretations, motivating the study of formal contract representations
in order to make them amenable to automated processing. Human interaction with
electronic contracts generally requires the use of a natural language interface, for which
controlled natural languages (CNLs) are frequently used.

We took the game of Nomic—a self-amending game based on government systems,
where turns are played by changing the rules—as a case study for this project. Nomic
combines contract-type game rules with the need for natural language interaction, thus
providing ideal scope for investigating the design of a contract logic and CNL interface
for the game.

We defined our own version of Nomic called BanaNomic, set in a rainforest where
players are monkeys in a tree, competing to pick bananas and able to manipulate the
rules of the forest to their advantage. A suitable contract logic was designed, and a
corresponding contract evaluator implemented in Haskell. A CNL interface was built
using the Grammatical Framework (GF), using its incremental parser to build guided
input methods for simplifying the writing of CNL phrases.

Two games of BanaNomic were played by 14 players over nine days, and qualitative
user evaluations were obtained through in-game feedback and a post-game question-
naire. The results of the evaluation indicated a positive response to the language used
in the game, for both the automatically generated phrases and the guided input me-
thods. The contract logic was found to be a little restrictive, but on the whole provided
for a well-balanced game and allowed for a variety of interesting and devious rules to
be created.

Despite some implementational flaws with the contract evaluator, the overall ap-
proach employed was well justified by the positive results obtained. The need for hu-
man language interfaces to electronic contracts is an important need, and this project
has served to demonstrate the success of one such approach.

iii

Acknowledgements

The author would like to thank the following people:

• Both my supervisors for all their guidance and feedback, and keeping me on my
[mental] toes.

• The helpful people at the Grammatical Framework developers group1, in particu-
lar Krasimir Angelov and Aarne Ranta.

• Joel Uckelman of http://nomic.net for pointing me to some useful Nomic litera-
ture.

• Stephen Blackheath for his help with the Hexpat2 Haskell package.

• All the evaluators who volunteered a few minutes of every day to using the system
and providing feedback.

• Nicola for her meticulous orthographical eye.

1http://groups.google.com/group/gf-dev
2http://hackage.haskell.org/package/hexpat

iv

http://nomic.net
http://groups.google.com/group/gf-dev
http://hackage.haskell.org/package/hexpat

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Natural and formal languages . 1

1.1.2 Contracts and ambiguities . 1

1.2 Motivation . 2

1.2.1 Electronic contracts and their use 2

1.2.2 The language problem . 3

1.2.3 Nomic . 4

1.3 Project aims . 5

1.4 Report overview . 5

2 Contract logic representations 6
2.1 What is a contract? . 6

2.2 Deontic logic . 6

2.2.1 OPP-logic . 7

2.2.2 Paradoxes . 7

2.3 Issues . 8

2.3.1 Action-based vs. state-based . 8

2.3.2 Reparation clauses . 9

2.3.3 Internal and external choice . 9

2.3.4 Temporal aspects . 10

2.4 Comparison of works . 10

2.5 Chapter summary . 12

3 Controlled natural languages 13
3.1 Processing natural languages . 13

3.1.1 The template approach . 14

3.2 Controlled natural languages . 15

3.2.1 Examples of CNLs . 16

3.3 Unification-based grammar formalisms . 18

v

CONTENTS vi

3.4 The Grammatical Framework . 19

3.4.1 Abstract & concrete syntaxes . 19

3.4.2 Linearisation-centric records . 21

3.4.3 Input possibilities . 21

3.4.4 Resource Grammar Library . 22

3.4.5 Projects using GF . 22

3.4.6 GF and CNLs . 23

3.5 Chapter summary . 23

4 BanaNomic 24
4.1 The game of Nomic . 24

4.1.1 Game objectives . 25

4.1.2 Flavours of Nomic . 25

4.1.3 Attempts at formalising Nomic . 26

4.1.4 PerlNomic . 26

4.2 BanaNomic . 27

4.2.1 The setting . 28

4.2.2 Rules of the rainforest . 28

4.3 Chapter summary . 29

5 A contract logic for Nomic 30
5.1 Formal grammar . 30

5.2 Contract examples . 33

5.3 Semantics . 34

5.3.1 Deontic inference and precedence 34

5.3.2 Choice . 34

5.3.3 Permanent contracts . 35

5.3.4 Timely contracts . 35

5.3.5 The generic player . 36

5.3.6 Rule manipulation . 36

5.4 Comparison with other works . 37

5.5 Chapter summary . 38

6 The language of BanaNomic 39
6.1 Designing the CNL . 39

6.1.1 Template-based linearisations . 39

6.1.2 Semantic disambiguation . 40

6.1.3 Punctuation . 40

6.1.4 Problem areas . 41

6.2 Grammar design in GF . 42

CONTENTS vii

6.2.1 Abstract syntax . 43

6.2.2 Concrete English syntax . 43

6.3 Chapter summary . 44

7 Implementation 45
7.1 System overview . 45

7.2 Client-side web application . 46

7.2.1 Google Web Toolkit . 46

7.2.2 Grammatical Framework . 46

7.3 Server-side backend & game evaluator . 48

7.3.1 Java backend . 48

7.3.2 Haskell game evaluator . 49

7.4 Implementation notes . 50

7.4.1 Hosting setup . 50

7.4.2 Web applications & user interface 50

7.5 Development issues & unforeseen problems 51

7.5.1 Logic . 51

7.5.2 Language . 53

7.5.3 User interface . 55

7.6 Chapter summary . 55

8 Evaluation 56
8.1 Methodology . 56

8.1.1 What answers are we seeking? . 56

8.1.2 The questions we asked and how 56

8.1.3 Evaluation period . 57

8.2 In-game feedback . 58

8.2.1 Average overall ratings . 58

8.2.2 User ratings over time . 58

8.2.3 Enactment of new rules . 58

8.2.4 Complete turns and passes . 60

8.3 Post-game questionnaire . 60

8.4 Discussion . 62

8.4.1 The contract logic and the self-amending game 62

8.4.2 Language aspect . 64

8.4.3 Overall reflections on the game . 65

8.4.4 Limitations with the methodology 66

8.5 Chapter summary . 67

CONTENTS viii

9 Conclusions 68
9.1 Reflections on the project . 68

9.1.1 Project overview . 68

9.1.2 Summary of results . 69

9.2 Points of limitation . 70

9.2.1 Natural language . 70

9.2.2 Contract logic . 71

9.2.3 Nomic . 72

9.2.4 Evaluation . 72

9.2.5 Other observations . 73

9.3 Future work . 74

9.3.1 Unrealised ideas . 74

9.3.2 Ultimate goals . 74

9.4 Closing remarks . 75

A User guide 77
A.1 The basics . 77

A.1.1 What’s this game all about? . 77

A.1.2 The setting . 77

A.1.3 Playing your turn . 78

A.1.4 Composing rules . 79

A.1.5 Feedback . 79

A.1.6 The initial rules . 80

A.1.7 Some gameplay tips . 81

A.2 Other issues . 81

A.2.1 What’s b’clock? . 81

A.2.2 How actions are processed . 81

A.2.3 How rules are processed . 81

A.2.4 Permission, obligation and prohibition 82

A.2.5 Sometimes & always . 82

A.2.6 Fixed laws . 82

A.3 Technical issues . 83

A.3.1 Browser compatibilities . 83

A.3.2 Bugs and glitches . 83

B Game transcripts 84
B.1 Initial rules . 84

B.2 Turn histories . 85

B.2.1 Banana Bonanza . 85

B.2.2 Potassium Paradise . 88

CONTENTS ix

B.3 Final summaries . 91

B.3.1 Banana Bonanza . 91

B.3.2 Potassium Paradise . 92

B.4 Interesting behaviour . 93

C Evaluation forms & results 96
C.1 Evaluators . 96

C.2 In-game feedback . 97

C.2.1 Feedback form . 97

C.2.2 Feedback responses . 97

C.3 Post-game questionnaire . 102

C.3.1 Questionnaire form . 102

C.3.2 Questionnaire responses . 103

D Selected code fragments 105
D.1 Game evaluator . 105

D.1.1 Contract logic grammar . 105

D.1.2 XML gamestate representation . 107

D.2 Grammatical Framework . 113

D.2.1 Abstract contract grammar . 113

D.2.2 complete() JavaScript extension . 114

Glossary of terms 118

Bibliography 121

List of Tables

3.1 Examples of CNL phrases and their natural equivalents 15

3.2 Examples of phrases in ACE . 17

5.1 Time limits for sometimes clauses . 35

5.2 Time limits for always clauses . 36

5.3 Example showing the abolition of an obligational clause 37

6.1 Examples of straightforward canned text linearisations 40

6.2 Contract logic examples and their equivalents in GF 44

6.3 Different possible linearisations of a single lexical function 44

8.1 Available rating levels . 57

B.1 Initial game rules . 84

B.2 Transcript for Banana Bonanza . 85

B.3 Transcript for Potassium Paradise . 88

B.4 Final rules for Banana Bonanza . 91

B.5 Final player standings for Banana Bonanza 92

B.6 Final rules for Potassium Paradise . 92

B.7 Final player standings for Potassium Paradise 93

C.1 List of evaluators . 96

C.2 In-game feedback evaluation data . 97

C.3 Post-game questionnaire responses . 103

x

List of Figures

3.1 Vauquois Triangle for machine translation and CNL triangle 14

3.2 The GF drop-down suggestions input method 22

7.1 System block diagram . 46

8.1 Overall in-game feedback ratings . 59

8.2 Average user ratings per day . 59

8.3 Enactment of new rules and input methods used 60

8.4 Complete turns and passes played . 61

8.5 Summary of post-game questionnaire responses 61

8.6 Post-game questionnaire responses about input methods 62

A.1 “Play Turn” panel . 78

A.2 Suggest panel input method . 79

A.3 Fridge magnets input method . 79

A.4 In-game feedback dialog . 80

xi

Chapter 1

Introduction

1.1 Background

1.1.1 Natural and formal languages

Communication is one of the most fundamental aspects of human life, one which we
have evolved to be particularly good at thanks to the development of language. There
are thousands of spoken, written and even signed languages which humans use to
communicate, but one feature which they share is that practically all human languages
evolve naturally. Natural languages are the direct products of the people who use them,
growing and adapting continuously and organically.

Yet, not all languages are formed this way. For all the expressivity of natural lan-
guages, there are many situations in which they are just too imprecise and ambiguous
for the task at hand. The areas of mathematics and computer science in particular re-
quire means of expression which are not just precise and free from ambiguity, but which
must also be amenable to automated reasoning. In such cases, domain-specific language
grammars are purposely constructed to meet these needs. Such languages are known as
formal languages, and include all computer programming languages, such as C or Java,
as well as the languages of mathematical logic such as predicate calculus.

Formal languages are often used to represent real-life phenomena as theoretical mo-
dels, which can be reasoned upon and simulated in virtual scenarios. This project will
look at the formal representation of natural language contracts, and the issues involved
in translating between the two.

1.1.2 Contracts and ambiguities

A contract is some form of agreement between two or more parties, defining what is
expected of each and the implications of failing to satisfy that agreement. Many things
are contracts: ISP service level agreements, the promise to meet your friend for coffee,

1

CHAPTER 1. INTRODUCTION 2

business partnerships, a marriage, software requirement specifications, governmental
laws and international treaties. Though these examples all display different levels of
importance, they are all based on the same basic notions of permission, obligation and
prohibition.

Whether verbal or written, real-world contracts are generally expressed using natural
languages. The more important a contract is, the more careful the wording used to
describe it—resulting in a particular form of language often called legalese. Because of
the important legal implications that contracts often represent, an entire profession exists
whose sole job is the writing and understanding of these documents. Notwithstanding
this, the fact that contracts are defined using natural language often leads to ambiguities
and contradicting interpretations. It is common that opposing parties do not agree about
what a particular clause in a contract implies, or whether or not a contract has been
breached in a given situation. This often ends up leading to legal proceedings where
rulings must ultimately be made by precedent, jury or judge.

1.2 Motivation

1.2.1 Electronic contracts and their use

The major problem with using natural languages to describe contracts is their inherent
fallibility. Natural languages make it very hard to express anything with the absolute
certainty that it may not be misconstrued—which is exactly what formal languages are
designed to avoid. Provided a suitable grammar is used, by describing a contract in for-
mal terms one would be able to completely avoid the ambiguities that normally arise out
of natural language descriptions. Not only could contracts become completely unambi-
guous, but when represented electronically they could also be verified in an automated
way. Violations to a contract would not need to be determined by lawyers or courtrooms,
but could be checked quickly and with confidence using standard verification tools.

Detecting conflicts In addition to automated analysis of actions against an existing
contract, the formal representation of contracts would also facilitate their checking for
conflicts and contradictions. This is of particular use when combining contracts from
various sources; for example in the ratification of an international treaty, where checks
must be made to ensure that local law does not contradict that of the treaty. This ability
becomes even more useful in dynamic settings such as service-oriented architectures,
where the contracts requiring analysis are only available at runtime (see the next section
for a typical example).

CHAPTER 1. INTRODUCTION 3

Service-oriented architectures

One of the most often-mentioned applications for electronic contracts is in service-
oriented architectures (SOA), for example when applied to an ISP service level agree-
ment (SLA). Such agreements typically describe the quality-of-service (QoS) properties
which are to be provided by the system for the consumer, such as the average bandwidth
should be more than 20kb/s and so forth (Prisacariu and Schneider, 2007).

Services such as internet provision are often composed of a number of sub-services
from different providers, for example the telecommunications company who owns the
physical network and an intermediary enabler. If each system in the hierarchy is gover-
ned by its own QoS contract, then in order for the ISP to provide their own SLA “pa-
ckage” they must be able to successfully combine each of these intermediary contracts,
ensuring that they do not conflict with one another.

In addition, one can appreciate that if these QoS agreements were to have a dynamic
nature to them, then the ISP’s means of ensuring contractual compatibility would also
need to be able to handle these on-the-fly changes in order to guarantee a consistent
SLA contract with its customers.

Legal uses

Another potential application for electronic contracts is in legal settings, ranging from
private contracts between individuals or corporations to state or even international le-
gislation. Currently these areas tend to be the exclusive domain of lawyers, who are
professionally trained to do this particular job. At the very least, electronic contract
systems could become powerful tools for lawyers, allowing them to double-check the
consistency of their work in an automated fashion.

Further to this, if backed by widely accepted standards then electronic contracts
could potentially bring a new level of transparency to the legal process, by allowing
non-professionals to analyse and verify contracts themselves without necessarily needing
legal consultation. This is not to say that the role of lawyers could be done away with,
but the benefits to users of such potential tools would be considerable.

1.2.2 The language problem

Despite their potential benefits, a major issue with formally defined contracts is the
language barrier they create for humans working with them. While natural languages
are by their nature easy for people to learn and use, the same cannot be said of for-
mal languages. Rather than being human-centric, formal languages are specifically
mathematics- or computer-oriented, and generally seem awkward and unnatural to
the average person. Although mathematicians and programmers must simply learn
to think and express themselves in a “formal” way, this cannot be expected of the public

CHAPTER 1. INTRODUCTION 4

at large. At the end of the day, people communicate using natural languages—not for-
mal ones—so a means of translating between a formal contract and a natural language
representation of it would be essential.

Yet as already discussed above, natural languages bring with them a host of well-
known problems such as ambiguity, syntactic complexity and context sensitivity (Pace
and Rosner, 2010)—some of the very problems which motivated the use of electronic
contracts in the first place. So how can we keep using formal contracts and all their
associated benefits, yet at the same time use natural language representations for them
without becoming vulnerable to their traditional problems?

Controlled natural languages

The route which shall be investigated in this project is the use of “stripped down” or
controlled natural languages (CNLs), which try to strike a balance between being precise
enough to facilitate their automated processing, yet at the same time natural enough to
be easily usable and adequately expressive for the average person. Controlled languages
are designed rather than evolved, and are produced by artificially restricting a subset of
a natural language with a specific purpose already in mind (Pace and Rosner, 2010).
CNLs are discussed in more detail in chapter 3.

1.2.3 Nomic

Nomic is a game of self-amendment loosely based on governmental systems (Suber,
1990). Starting with an initial rule set, each player takes their turn by changing the
game’s rules through a system of rule proposals and player voting. What makes No-
mic so particular is that everything is theoretically up for amendment during the game,
including the voting system itself and what players need to do to win. This produces
a totally unique style of play, which has spawned hundreds of games being played by
thousands of players worldwide for over 20 years (Phair and Bliss, 2005).

Despite the popularity of the game, only one Nomic variant could be found which
uses automated rule processing, and was actually played directly in the Perl program-
ming language (Phair and Bliss, 2005). The contract-style rules system found in Nomic
and the potential for automated analysis were of particular relevance to this project,
which when combined with the need for natural language interaction provided an ideal
case study for this project. More details on Nomic can be found in chapter 4.

CHAPTER 1. INTRODUCTION 5

1.3 Project aims

Goals

The primary goal of this project was to explore the use of CNLs as a human interface for
formal contract logics. Secondly, this project aimed to investigate the issues involved in
the design and automated analysis of formal languages for electronic contracts. Using
the game of Nomic as a case study, a suitable formal contract logic and corresponding
natural language grammar were to be designed and incorporated into a playable ver-
sion of the Nomic game. The effectiveness of this approach with respect to the natural
expressivity of the game would then evaluated by a group of independent test users.

Objectives

1. Design a formal contract logic for representing the Nomic game and facilitating its
automated verification.

2. Design a CNL interface for this logic which is naturally expressive yet amenable
to parsing and generation.

3. Build a playable version of the Nomic game using the items described above.

4. Evaluate the suitability of the contract logic and the expressivity of the CNL qua-
litatively, by employing a group of users to play the game and comment on their
experiences with it.

1.4 Report overview

Following is a brief outline of the structure of this report. Chapters 2 and 3 cover the
background of contract logics and CNLs respectively. Chapter 4 looks at the game of
Nomic, and goes on to outline the version of Nomic designed for this project, BanaNo-
mic. Chapters 5 and 6 cover the design of the contract logic and natural language for
BanaNomic. Chapter 7 takes a closer look at the implementation details of the system,
while chapter 8 moves on to the method of evaluation and a discussion of the results
obtained. Finally, the conclusion in chapter 9 looks at the overall success of the project,
discussing its major limitations and ideas for future work.

The appendices section of this project includes a user guide to the BanaNomic game
(appendix A), full transcripts of the games played along with some interesting observa-
tions (appendix B) and listings of all the feedback received during the evaluation period
(appendix C). Appendix D contains selected code fragments from the project implemen-
tation.

Chapter 2

Contract logic representations
In this chapter we examine the various possibilities for formal contract representa-
tions. With a particular focus on the deontic notions of obligation, permission and
prohibition we explore the issues arising from formal contract languages and how
they are tackled by different authors.

2.1 What is a contract?

The concept of a contract can be realised in a number of different ways, from simple
pre/post-conditions to quality-of-service (QoS) properties (Fenech et al., 2009c)—or in
other words, the view of a contract as a set of conditions which a system must satisfy.
This approach may seem like a natural one, however viewing a contract simply as a
set of logical properties contains much implicit information and does not allow for the
expression of exceptional cases, i.e. when contract clauses are violated. In addition, this
approach may actually hide contractual conflicts altogether (Fenech et al., 2009b).

The approach usually favoured in most of the literature is to use deontic logic to
enable the explicit automated reasoning of both normative and exceptional contract
behaviour, as well as facilitate conflict detection and analysis (Fenech et al., 2009b).
The rest of this chapter will deal mainly with this deontic approach and its various
realisations.

2.2 Deontic logic

Deontic logic is concerned with the concepts of obligation, permission and prohibition,
or the logic “of ideal . . . versus actual behaviour” (Meyer et al., 1994). Most of the litera-
ture in the area tends to agree that these deontic notions provide an ideal basis for formal
contract languages. While in real-world contracts we often make distinctions between
“rights”, “permissions” and “authority” and between “must”, “ought to” and “should”,
these distinctions are not necessarily required for analysis. (Pace and Schneider, 2009)

6

CHAPTER 2. CONTRACT LOGIC REPRESENTATIONS 7

These deontic notions alone, however, are not sufficient to fully capture the diversity
of real-world contracts and so are often supplemented with temporal, reparational, and
other operators (Pace and Schneider, 2009). Numerous issues arise in the construction
of these combined grammars, the most predominant of which are discussed in § 2.3.

2.2.1 OPP-logic

To avoid generalising the term “deontic logic”, Pace and Schneider (2009) coin the
phrase OPP-logic to refer to a formal language based on the deontic concepts of obli-
gation, permission and prohibition (the “OPP” part) and allowing for the specification
of reparation clauses (§ 2.3.2), temporal/causal aspects (§ 2.3.4), and more. OPP-logic
is defined over actions, providing a number of operators over them (such as choice +,
composition · and so forth).

2.2.2 Paradoxes

Starting from its formalisation into Standard Deontic Logic (SDL) (Pace and Schneider,
2009), the field of deontic logic has been plagued by a number of infamous paradoxes—
expressions in deontic logic which are technically valid, yet seem counter-intuitive to
standard reasoning. Some of the most well-known deontic paradoxes include (Meyer
et al., 1994):

Ross’ paradox Expressed formally as Oϕ → O(ϕ ∨ ψ), this expression can be reached
by using a simple disjunction-introduction. However when illustrated with an
instance like

If one is obliged to mail a letter, then one is obliged to mail a letter or burn it.

this quickly becomes paradoxical, and clearly undesirable.

No conflicting obligations From the laws of standard logic, the conjunction of some-
thing with it’s own negative must itself be false, or in deontic terms: ¬(Oϕ∧O¬ϕ).
In natural language we could express this as:

It is impossible to be obliged to go to work and also be obliged not to go work.

However in real life, conflicting obligations are very much possible—just think of
a union worker on strike.

Good Samaritan paradox This aptly-named paradox states that the implication of so-
mething which is obligated, is itself obligated. Formally defined as ϕ → ψ `
Oϕ→ Oψ, this could easily be expressed as:

CHAPTER 2. CONTRACT LOGIC REPRESENTATIONS 8

If George helps Ringo, this implies that Ringo is injured;
Thus if it is obliged that George helps Ringo, then it is obliged that Ringo is
injured.

In this case, what started out with good intentions clearly ended up with a less-
than-desirable outcome.

Yet more paradoxes

Further to the deontic paradoxes described above, the introduction of temporal concepts
into contract logics introduces yet more paradoxes (Pace and Schneider, 2009). Consider
the following example adapted from Pace and Rosner (2010):

The law of a country says that: One is obliged to hand in Form A on Monday
and Form B on Tuesday, unless officials stop you from doing so.
On Monday, Linda did not hand in Form A. On Tuesday she was arrested,
and brought to justice on Wednesday.
The police argue: ‘The defendant was obliged to hand in Form A on Monday,
which she did not. Hence she should be found guilty’.
But Linda’s lawyer argues back: ‘To satisfy her obligation the defendant
had to hand in Form B on Tuesday, but she was stopped from doing so by
officials. Therefore she is innocent’.

Both of these arguments seem valid, yet they are obviously inconsistent with each other.
In this case, the problem stems from different definitions of when the obligation becomes
violated; is it violated as soon as the first action is not carried out, or when the relevant
time period has elapsed?

Despite various attempts at handling these paradoxes through axiomatizations, the
most successful approach is to simply restrict the contract syntax (Pace and Rosner, 2010;
Fenech et al., 2008). Since often the eventual goal is to model real-world contracts which
are expressible in natural language (and free from such paradoxes), this restriction is a
justifiable solution.

2.3 Issues

2.3.1 Action-based vs. state-based

Contract languages can be defined in one of two ways; either expressing what the parties
involved should or should not do (action-based), or what state of affairs should or should
not exist. The two approaches are also known as “ought-to-do” and “ought-to-be”
respectively, for example:

CHAPTER 2. CONTRACT LOGIC REPRESENTATIONS 9

Paul is obliged to rake the leaves on Sunday. — Action-based (ought-to-do)
On Sunday the leaves must be raked by Paul. — State-based (ought-to-be)

Both approaches may be defended, and the choice of which to use ultimately depends
on the domain in question (Pace and Schneider, 2009). In many contracts it may seem
more natural to use ought-to-do clauses where the subject and their actions are explicitly
stated; however in some settings like QoS contracts it makes more sense to use an ought-
to-be approach, for example the average bandwidth should be more than 20kb/s (Prisacariu
and Schneider, 2007).

2.3.2 Reparation clauses

In a contract where the obligations of different parties are specified, it is equally impor-
tant to specify what reparations will follow if those obligations are not fulfilled. These
are known as contrary-to-duty (CTD) and contrary-to-prohibition (CTP) clauses, and
are commonplace in the types of contracts we encounter in everyday life, such as:

Shoppers are forbidden from taking items without paying for them;
Violating this will result in prosecution.

Note how such clauses are based on the concepts of causality and hence temporality.
Some different approaches to handling reparation are discussed in § 2.4.

2.3.3 Internal and external choice

It is common for contracts to contain an element of choice between clauses, although in
many cases it is often unclear who is allowed or expected to make that choice. Consider
the following example:

Next spring, John will be obliged to either (i) tour with the band; or (ii) stay home
with Yoko.

This sounds like a reasonably straightforward clause, although what it fails to specify is
who should make the choice between the two options. In this example, there are at least
three possibilities: John, Yoko, or some other non-deterministic entity1. The former two
would constitute external or angelic choice, with the latter being internal or demonic (note
that here the terms internal/external are in reference to the contract, not the performer
of the action). Clearly each possibility favours a different party, so a clearly defined
system for determining who can ultimately make the decision must exist.

1Perhaps John’s manager or the other band members should have a say too.

CHAPTER 2. CONTRACT LOGIC REPRESENTATIONS 10

2.3.4 Temporal aspects

Another common feature of “practical” contracts is ability to write clauses which refer
to time in either a relative or an absolute sense. Consider the following examples:

You are obliged to fill in the form and sign it. (no temporal reference)
You are obliged to fill in the form, after which you are obliged to sign it. (relative)
You are obliged to fill the form and sign it by Monday 13th. (absolute)

Different approaches to the handling of temporal aspects are compared in § 2.4.

2.4 Comparison of works

In this section we mainly compare the works of the contract language CL as defined in
Prisacariu and Schneider (2007), and the OPP-logic as used in Pace and Schneider (2009)
and Pace and Rosner (2010).

Both works are designed with the same intention, that is the formal representa-
tion of contracts based on OPP notions and temporal aspects, while avoiding the major
paradoxes often encountered in the area. CL and OPP-logic both choose to take the
action-based “ought-to-do” approach.

Reparation

In the original definition of OPP-logic Pace and Schneider (2009) the authors propose
the use of dedicated operators CTD(α, C) and CTP(α, C) which explicitly specify an
obliged/prohibited action α and the contract C that must be satisfied if the former clause
is violated.

The version proposed in Pace and Rosner (2010) takes a slightly different approach,
by using an if-then-else type of notation c1 / α . c2, whereby if the action α is carried
out then c1 comes under affect; otherwise c2 becomes applicable. This is known as the
conditional operator.

The implementation of CTDs in CL borrows the [α] φ syntax from Propositional
Dynamic Logic (PDL) to represent that after performing action α, clause φ must hold.
Following from this, CTDs are expressed using the Oϕ(α) operator which equates to
O(α) ∧ [α] ϕ, or “α is obliged, and if α is not carried out then ϕ must hold” (Prisacariu
and Schneider, 2007).

Choice

The issue of internal/external choice (§ 2.3.3) deals with who is allowed/expected to
make the decisions defined in a contract.

CHAPTER 2. CONTRACT LOGIC REPRESENTATIONS 11

As noted in Fenech et al. (2009a), the Communicating Sequential Processes (CSP)
language has explicit operators for internal and external choice—u and [] respectively,
eliminating the internal-external problem altogether.

On the other hand, CLmakes no distinction between the two options (Prisacariu and
Schneider, 2007), leaving it up to the formal semantics of the grammar to define which
type of choice to apply.

Pace and Schneider (2009) suggest that internal and external choice be inferred by the
position of the choice operator with respect to the deontic ones. Consider the difference
in these two examples:

a. O(a + b)
John is obliged to either (i) tour with the band; or (ii) stay home with Yoko.

b. O(a) + O(b)
John is either (i) obliged to tour with the band; or (ii) obliged to stay home with Yoko.

A seemingly fair way to interpret these contracts is to say that in the former, the obli-
gation is already enacted and thus it is up to John to decide which option to choose
(external), while in the latter case John is not obliged to choose, thus the choice lies with
some other non-deterministic entity (internal). The authors however admit that this ap-
proach may at times be questionable, as being able to enact concurrent obligations as in
contract (a) can allow for contractual anomalies.

Furthermore, this creates additional problems when used with prohibitions. Consi-
der the clause:

F(a + b)
George is forbidden from either (i) watching the game; or (ii) staying out all night.

It this case it becomes unclear how to interpret the contract; should George be forbid-
den from doing both actions (even individually), or should he only be prohibited from
carrying them both out?

Time

When it comes to the inclusion of temporal aspects in contract logics, Fenech et al.
(2009a) look at the use of Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL) by testing them on a set of use cases from the Common Component Modelling
Example (CoCoME). Their findings however indicate that they are both inadequate for
encoding capturing the traditional deontic notions in an analysable way.

Furthermore, CL is already in-built with the temporal notions U (until),© (next), �

(always) and ♦ (eventually)—as taken from temporal logic (TL) (Prisacariu and Schnei-
der, 2007).

CHAPTER 2. CONTRACT LOGIC REPRESENTATIONS 12

The OPP-logic grammar defined in Pace and Rosner (2010) goes a step further, with
the incorporation of timed regular expressions within discrete domains.

Verifiability

Finally, we move onto the verifiability of formally encoded contracts. Using a set of
CoCoME use cases as mentioned in the previous section, Fenech et al. (2009a) find
that while LTL/CTL and CSP are amenable to formal analysis within their own right,
major difficulties arise when using them to represent contracts. With the temporal logics
(LTL/CTL) the issue lies with the encoding of the deontic notions themselves, while with
the operational CSP there is no clear way to correctly represent CTD actions within the
language. They conclude that for the analysis of full contracts, the deontic-based CL
proves most suitable.

The verifying of contracts written in CL has been successfully demonstrated by
converting the CL specification into the extended µ-calculus Cµ and using the NuSMV
verifier (Pace et al., 2007).

Fenech et al. (2009b) point out that while CL includes a trace semantics for runtime
monitoring, these are inadequate for the detection of conflicts as they do not capture
the deontic aspects of the contract. They go on to present their own version of the
trace semantics suitable for conflict analysis (Fenech et al., 2009c) and demonstrate a
custom-built tool for this purpose named CLAN (CL ANalyser) (Fenech et al., 2009b).

2.5 Chapter summary

In this chapter we first tackled the basic problem of how to represent a contract and
went on to introduce the field of deontic logic, showing the extent of its adoption in
the area of formal contract representation. We explained the temporal and reparational
extensions often added to deontic logic (referred to as OPP-logic) and pointed out some
of the paradoxes that have plagued the field, along with how they are generally avoided.
Some of the salient issues with OPP-logics were discussed, and comparisons were made
between some of the major works in this area.

Chapter 3

Controlled natural languages
In this chapter we briefly discuss the background of natural language handling in
computer applications, moving on to focus on controlled natural languages and the
arguments for their adoption. After going over some of the classical grammar forma-
lism used in natural language processing, we introduce the Grammatical Framework
and describe the benefits it offers. Finally mention some of the successful usages of
the framework, and its relevance to the area of controlled natural languages.

3.1 Processing natural languages

Ever since the creation of computers there has existed a very fundamental communi-
cation problem—humans and computers don’t talk the same language. Human know-
ledge generally is represented and shared using natural languages, but computers can
only process information which is represented formally. Both types of language have
their purpose, and there exists quite a “conflict between the wish to use natural lan-
guages and the need to use formal languages” (Fuchs et al., 2008)—which is one of the
major concerns of natural language processing (NLP).

This issue is traditionally split into two separate but related problems; the genera-
tion of natural language phrases from formal statements, and their analysis into formal
expressions:

natural language
analysis
−−−−−−→←−−−−−−
generation

formal representation

Figure 3.1(a) shows the so-called Vauquois triangle (Vauquois, 1968), which demons-
trates the concept of machine translation (MT) via the processes of analysis and gene-
ration. The top vertex of the triangle represents the intermediary formal representation
of the information under translation, with the vertical position of the ‘Transfer’ arrow
providing some indication as to the linguistic depth of this representation (Pace and
Rosner, 2010).

In this section we first look at the simple template-based approach to handling natural
languages, followed by an introduction to the concept of controlled of natural languages

13

CHAPTER 3. CONTROLLED NATURAL LANGUAGES 14

communicate the results of those inferences back to the user, there must be the means
to translate relevant elements of the (possibly modified) representational form back into
CNL.

Much of the discussion that follows concerns an appropriate choice of logic rep-
resentation and the level of abstraction that it encodes. The discussion recalls issues
that arise with respect to the choice of intermediate levels of representation needed for
transfer-based Machine Translation. This is depicted in Figure 1 (a) below which de-
picts so-called Vauquois triangle (Vauquois [2]).

Source

Analysis

Transfer

Generation

Target

inference tasks

CNL input

analysis
CNL

tasks

CNL
generation
tasks

CNL output

Logic−based

Fig. 1. (a) Vauquois Triangle for machine translation; and (b) Controlled natural language triangle

The bottom left and right vertices of the triangle represent source and target lan-
guage sentences respectively. In a classic transfer-based system, the translation process
comprises three phases: (i) analysis (ii) transfer and (iii) generation. The actual transla-
tion is carried out by the transfer phase which applies transfer rules to abstract source
sentence representations to yield target-language representations. The great advantage
of defining translation over representations rather than sentences or sentence-fragments
is that transfer rules are able to translate classes of similar linguistic forms and hence
to capture linguistic generalisations. The downside is that representations are not sen-
tences, and in order to ground the system to concrete text, appropriate mappings to
source and target text have to be defined. These are supplied by the analysis and gen-
eration phases, which are respectively responsible for the mapping between source text
and representation, and between target representation and target text.

There is a close relationship between transfer-based machine translation and the
CNL inference system we are trying to construct. This is illustrated in figure 1(b),
where the “source text” is in CNL and expresses at least (i) a contract and also (ii)
some other information concerning the particular task at hand, for example concerning
the contract’s consistency, request for explanation, or applicability of the contract to a
particular situation. In this article we will limit the discussion to (i). The right hand “tar-
get” vertex of the triangle represents CNL output, i.e. a piece of text that fulfils the task
at hand. In between, corresponding to the place where transfer is carried out in the ma-
chine translation system, is where the relationship between the task, and the answer, is
computed using logical inference. So the representation, whatever it is, encodes expres-

Figure 3.1: (a)Vauquois Triangle for machine translation; and (b) Controlled natural language
triangle (see § 3.2). Taken from Pace and Rosner (2010).

and a discussion of their suitability for machine translation to and from contract logics.

3.1.1 The template approach

One of the most basic ways of handling natural language generation is the “template”
or “canned text” approach (Dale et al., 2000), which essentially uses pre-defined phrases
containing slots where names and values can then be entered as needed. A common
social media example of such a template could easily be:

<number > people like <name >’s status.

By simply inserting the known values in the correct positions, a seemingly natural
phrase can be generated:

Three people like Paul’s status.

In restricted scenarios this simple approach can produce satisfactory results, however
it is easy to see that its expressivity is limited entirely by the phrases that have been
manually entered into the system. Furthermore, there is no inherent agreement between
the canned text and the inserted values, meaning programmers need to explicitly check
for values of 1, names ending in s and so forth. Without such checks, something like the
following erroneous phrase could easily be generated:

One people like James’s status.

While in some settings these errors may be acceptable, they are clearly not correct use
of natural language.

This template approach may also arguably be used for natural language “analysis”,
by matching an input phrase against a corresponding template and stripping away the
canned text to obtain the desired values. However this is again highly limited, and such
a system would only be able to parse phrases which match exactly with the original
templates. This approach shows absolutely no level of linguistic understanding, and

CHAPTER 3. CONTROLLED NATURAL LANGUAGES 15

fidelity is cannot be guaranteed since the canned text has no “systematic relation to the
underlying rules” (Pulman, 1996).

3.2 Controlled natural languages

A more involved way of tackling machine translation between formal and natural lan-
guages is through the use of controlled natural languages (CNLs). CNLs are artificially
created subsets of regular natural languages which have a reduced vocabulary, syntax
and semantics in order to minimise ambiguity and maximise clarity (Pace and Rosner,
2010; Pulman, 1996). While not as expressive as a full natural language, the main pur-
pose of a CNL is to be adequately expressive for regular people to understand and use,
yet precise enough to facilitate automated generation and analysis (Pace and Rosner,
2010).

Syntax restrictions

To give a clearer idea of the kinds of restrictions which CNLs usually involve, Pace and
Rosner (2010) provide us with the a few examples of CNL phrases along with their fully
natural equivalents, as shown in table 3.1. More examples of phrases in CNL can be found
in § 3.2.1.

Natural Upon accepting a job, the system guarantees that the results will be avail-
able within an hour unless cancelled in the meantime.

Controlled if SYSTEM accepts Job, then during one hour it is obligatory that
SYSTEM make available results of Job unless SOMEONE cancels Job.

Natural Only the owner of a job has permission to cancel the job.
Controlled it is permitted that only owner of Job cancels Job.

Natural The system is forbidden from producing a result if it has been cancelled by
the owner.

Controlled If owner of Job cancels Job, it is forbidden that SYSTEM produces
result of Job.

Table 3.1: Examples of CNL phrases and their natural equivalents, from Pace and Rosner (2010).

CNLs for translation

The main reason for designing and using controlled languages is their suitability for
automatic translation to and from formal representations. The use of CNLs for auto-
matic machine translation closely matches the traditional Vauquois model (Vauquois,
1968), as illustrated in figure 3.1(b). As such, the CNL model is a more specific version
of the Vauquois one, where the transfer method is defined to operate using logic-based

CHAPTER 3. CONTROLLED NATURAL LANGUAGES 16

inference (Pace and Rosner, 2010).

Input issues

Reading and understanding phrases written in a CNL is relatively easy to do for anyone
who is fluent in the “full” version of the language (Fuchs et al., 2008). However, compo-
sing sentences which would be considered valid by a given CNL is trickier. Because at
heart they are formally defined, CNLs are not forgiving—the way people are—when it
comes to the range of phrases they may include. Thus for an application to successfully
allow user input of CNL phrases, a degree of user learning and some way of ensuring
that valid statements are entered is required (Pulman, 1996).

For examples of the input methods enabled by the Grammatical Framework, refer to
§ 3.4.3.

3.2.1 Examples of CNLs

Computer Processable English (CPE)

CPE (Pulman, 1996) is a CNL designed for knowledge-representation applications, with
the aim of improving the acquisition and management of knowledge in expert systems.
In order to achieve portability between the controlled language and underlying logic
representation, the Knowledge Interchange Format (KIF) (Patil et al., 1992) is used as an
intermediate “canonical” representation. This extra layer avoids the difficulties encoun-
tered in direct translation from CNL to executable representation language, but requires
that the latter is convertible into KIF.

The following is an example of KIF rule linearised into CPE (Pulman, 1996).

TASK: dispatch an RPV
INPUTS: a blocked route , B; a location , L.
PRECONDITIONS:

there must be at least 1 available RPV
there must be less than 3 active RPVs

ACTION:
make a mission record , M,
which has mission route , R,
and which has blocked route , B,
and which has blocked location L.
R’s launch location is divisional HQ.
R’s recce route is L.
R’s search radius is 3000.

deploy an available RPV , X,
which has mission route R,
and which has mission type ‘single mission ’.

change status of X from ‘available ’ to ‘active ’.

CHAPTER 3. CONTROLLED NATURAL LANGUAGES 17

Note how the problem of pronouns is avoided by naming each entity in the rules by a
letter-code. This is not a particularly natural aspect of the language, but is deemed to
be an acceptable trade-off.

A tool built specifically for facilitating this conversion from controlled English into
KIF formulas was produced in the Controlled English to Logic Translation (CELT) pro-
ject (Pease and Murray, 2003). The CELT tool includes a large lexicon imported from
WordNet1, and allows sentences to have multiple possible parses. The parsing itself is
achieved using definite clause grammars (§ 3.3) with feature grammar extensions.

Attempto Controlled English (ACE)

The Attempto project2 produced its own knowledge representation CNL called ‘ACE’,
with considerable success (Fuchs et al., 2008). Like CPE, ACE also uses an intermediary
representation format known as discourse representation structures (DRS), which can
then be easily translated into first-order logic. The ACE language “has been used in
several applications, and was adopted as the controlled language of the EU Network of
Excellence REWERSE (Reasoning on the Web with Semantics and Rules)” (Kaljurand,
2009).

ACE is one of the best examples of how convincing a CNL can be, as illustrated in
the selection of examples in table 3.2.

Simple Sentences A trusted customer inserts two valid cards.
A customer inserts two cards manually.
John’s customer who is new inserts 2 valid cards of Mary manually
into a slot X.

Composite Sentences If a card is valid then a customer inserts it.
A customer inserts a VisaCard or inserts a MasterCard, and inserts a
code.
No customer inserts more than 2 cards.

Commands John, go to the bank!
John and Mary, wait!
Every dog, bark!

Table 3.2: Examples of phrases in ACE, taken from Fuchs et al. (2008).

In addition to the language itself, ACE is supported by a number of tools for parsing,
reasoning, and conversion into semantic web languages. The parsing tool for ACE—the
Attempto Parsing Engine (APE)—features both standard and user-defined lexicons, and
can provide various kinds of parsing output to the user; APE can produce translations
in various forms of first-order logic, the Web Ontology Language (OWL), Semantic Web

1http://wordnet.princeton.edu/
2http://attempto.ifi.uzh.ch/

http://wordnet.princeton.edu/
http://attempto.ifi.uzh.ch/

CHAPTER 3. CONTROLLED NATURAL LANGUAGES 18

Rule Language (SWRL) and RuleML (Fuchs et al., 2008). The language also enjoys an
automatic reasoning tool named the Attempto Reasoner (RACE) along with the semantic
web oriented ACE View, AceRules and AceWiki tools (Fuchs et al., 2008).

Processable English (PENG)

Taking the parsing of CNLs one step further, Processable English (PENG) is a CNL born
out of ACE whose main focus is on producing a syntax-aware, predictive text editor
and parsing tool which can be used without prior knowledge of the CNL grammar
itself. This tool, called ECOLE, helps users write grammatical PENG sentences first time
round by looking ahead and indicating in real-time whether a phrase is grammatical or
not (Schwitter, 2002).

3.3 Unification-based grammar formalisms

A grammar formalism is a language for the definition of grammars, such as BNF (Backus-
Naur Form). Many of the grammar formalisms used in computational linguistics belong
to the family of unification grammars. Such grammars revolve around formal descriptions
of grammatical units by using attribute-value pairs (Cole et al., 1997). These are called
feature structures, and their merging together through the checking of grammatical in-
formation is known as unification. Unification grammars provide an elegant way of
representing syntactical constraints that would be difficult to express with context-free
grammars (CFGs) alone (Jurafsky and Martin, 2009).

Definite clause grammars (DCGs)

The DCG (Pereira and Warren, 1980) is one of the simplest and earliest examples of a
unification grammar. Traditionally implemented in Prolog, DCGs provide the concept
of grammar features, making them more powerful than CFGs (equivalent to context-
sensitive grammars) and therefore more linguistically useful. Consider the following
example of a DCG grammar adapted from Blackburn et al. (2006):

s --> pro(subject), vp.
vp --> v, pro(object).
pro(subject) --> [he].
pro(subject) --> [she].
pro(object) --> [him].
pro(object) --> [her].
v --> [likes].

By using features, this small grammar ensures that he likes her is valid, but he likes she is
not. Despite their initial popularity, DCGs have fairly low-level descriptive capabilities,
and their lack of types makes them ineffective for large scale tasks (Ranta, 2004).

CHAPTER 3. CONTROLLED NATURAL LANGUAGES 19

PATR

The PATR-II formalism (Shieber, 1984) is a computer language created by the PATR
group for encoding linguistic information. It was one of the first attempts to create “a
declarative computer language with clear semantics designed specifically for encoding
linguistic information” (ibid.). PATR-II was the first formalism to use records for repre-
senting complex grammatical objects (Ranta, 2004), and works using feature agreement.

Head-driven phrase structure grammars (HPSG)

A lexical head is the most grammatically important word in a phrase (Jurafsky and
Martin, 2009), and HPSGs (Pollard and Sag, 1994) work by annotating each sub-tree in
a parse with that phrase’s lexical head. HPSGs express complex grammatical objects
as typed records or signs—inherited from PATR-II—which contain “both syntactic and
semantic information” (Ranta, 2004). This concept means that the HPSG formalism is
based on lexicalism, where the lexicon is made up of richly structured entities rather than
just a list of entries (Pollard and Sag, 1994).

Through the DELPH-IN project3 many large open-source HPSG grammars are being
developed for various languages, including English, German and Japanese.

3.4 The Grammatical Framework

The Grammatical Framework (GF) (Ranta, 2004) is a specialised functional language
for defining Montague-style grammars extended with dependent types. GF differs
from unification-based grammar formalisms by having separate abstract/concrete syn-
tax rules, a strong type system, and inherent support for multilingual grammars. GF
grammars are declarative in nature, with a primary focus on the linearisation of syntax
trees. By writing an abstract GF grammar and defining how it should linearise into one
or more natural languages (concrete grammars), GF is able to derive both a generator
and a parser for each of those languages. (Ranta, 2004).

3.4.1 Abstract & concrete syntaxes

When implementing a computer language it is common to make the distinction between
its abstract and concrete syntaxes. The abstract syntax defines the language’s hierarchical
structure using a system of trees, while the concrete syntax dictates how the language
“looks like” (Ranta, 2004; Angelov, 2009). This separation is based on the idea that type
checking and semantics are more relevant to the abstract level, while syntax details are
more a concrete concern (Ranta, 2004).

3Deep Linguistic Processing with HPSG Initiative (DELPH-IN). http://www.delph-in.net/

http://www.delph-in.net/

CHAPTER 3. CONTROLLED NATURAL LANGUAGES 20

To demonstrate this duality, consider this “Hello World” abstract grammar taken
from the GF Tutorial4:

abstract Hello = {
flags

startcat = Greeting ;
cat

Greeting ; Recipient ;
fun

Hello : Recipient -> Greeting ;
World , Mum , Friends : Recipient ;

}

This grammar simply defines two linguistic categories (Greeting being the start cate-
gory for parsing and generation) and a total of four functions for building meaning.
To this, we can add any number of concrete syntaxes which define how this abstract
structure can be linearised into text5:

concrete HelloEng of Hello = {
lincat

Greeting , Recipient = {s : Str} ;
lin

Hello recip = {s = "hello" ++ recip.s} ;
World = {s = "world "} ;
Mum = {s = "mum"} ;
Friends = {s = "friends "} ;

}

concrete HelloMlt of Hello = {
lincat

Greeting , Recipient = {s : Str} ;
lin

Hello recip = {s = "bonġu" ++ recip.s} ;
World = {s = "dinja "} ;
Mum = {s = "mama"} ;
Friends = {s = "h̄bieb"} ;

}

Both concrete syntaxes define how the Greeting and Recipient categories are lineari-
sed as a single string s. The three Recipient functions are given direct linearisations
which differ between languages, and the Hello function returns a complete phrase by
concatenating the recipient string (recip.s) to the world “hello”.

This allows a single, common abstract syntax to be linearised in as many different
ways as there are concrete syntaxes and forms the basis for GF’s approach to multilin-
gual translation. Further to simple example shown above, each concrete syntax is able

4http://www.grammaticalframework.org/doc/gf-tutorial.html
5Ibid.

http://www.grammaticalframework.org/doc/gf-tutorial.html

CHAPTER 3. CONTROLLED NATURAL LANGUAGES 21

to define its own linearisation rules, to cover linguistic phenomena such as inflection
and agreement on a per-language basis.

3.4.2 Linearisation-centric records

As shown in the previous example, grammatical objects in GF are represented as re-
cords, with a focus as to how each object is linearised. This is comparable to the use of
signs in HPSG, however while signs only capture an instance of a word’s possible forms
and inflections, GF’s records encode all such forms within a single object (Ranta, 2004).
Consider the English noun form “integers”; since HPSG signs are obtained via string
analysis, a sign for “integers” would be encoded as:

{ cat = Noun ; s = “integers” ; num = Plural }

Note how this does not provide any information about the singular form of the word;
merely that “integers” is a plural noun. On the other hand, GF would encode this same
term as a table of possible linearisations:

{ cat = Noun ; s = table {Singular ⇒ “integer” ; Plural ⇒ “integers”} }

Note how in contrast to the HPSG example above, this record contains the linearisation
for both the singular “integer” and plural “integers” (example taken from Ranta (2004)).

3.4.3 Input possibilities

A major part of GF is its partial evaluation algorithm or incremental parser (Angelov,
2009), which gives rise to interesting guided-input possibilities. By presenting the user
with a list of possible words which may come next in a partial sentence, they are able to
construct grammatical sentences in an auto-complete fashion. This is highly useful as
it ensures that only syntactically-correct phrases are entered first-time round, and will
avoid user frustration of trying to construct valid sentences in free-text.

Two implementations of this method of input—the drop-down suggestions6 (see
figure 3.2) and the “fridge poetry magnets”7—have been developed by the GF team,
and are distributed as examples with the GF source code. These input methods are of
particular interest to the area of CNLs, as they help avoid the problem of users having
to know what is grammatical in a particular CNL and what is not.

6Online demonstration at http://tournesol.cs.chalmers.se:41296/translate/
7Online demonstration at http://tournesol.cs.chalmers.se:41296/fridge/

http://tournesol.cs.chalmers.se:41296/translate/
http://tournesol.cs.chalmers.se:41296/fridge/

CHAPTER 3. CONTROLLED NATURAL LANGUAGES 22

Figure 3.2: The drop-down suggestions input method as used in the “Translate” application;
demonstrated online at http://tournesol.cs.chalmers.se:41296/translate/

3.4.4 Resource Grammar Library

In addition to the GF formalism itself, an important part of the framework is the Re-
source Grammar Library which is distributed with it. This library is a set of GF parallel
grammars in a number of languages including Bulgarian, Catalan, Danish, English, Fin-
nish, French, German, Italian, Norwegian, Polish, Romanian, Russian, Spanish, and
Swedish (Ranta, 2009). All grammars in the library share the same abstract syntax (see
§ 3.4.1), allowing it to be used as a “resource for language processing tasks, such as
translation, multilingual generation, software localization [and] natural language inter-
faces” (Ranta, 2009). The GF Resource Grammar Library is open-source8.

3.4.5 Projects using GF

First created in 1998 and released under the GNU General Public License (GPL)9, GF
has been used in a number of projects which involve automated translation to and from
natural languages, often within a multilingual setting.

Alfa

The Alfa proof editor (Hallgren and Ranta, 2000) is one such project which has incor-
porated GF as a plug-in for linearising formal proofs into various natural languages.
This allows users to construct proofs interactively while instantaneously viewing them
as natural language texts. In addition, users are able to extend this capability to new
languages by writing additional GF grammars for the concrete syntax (Ranta, 2004).

8Available under the GNU Lesser General Public License (LGPL); http://www.gnu.org/licenses/
lgpl.html

9http://www.gnu.org/licenses/gpl.html

http://tournesol.cs.chalmers.se:41296/translate/
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/gpl.html

CHAPTER 3. CONTROLLED NATURAL LANGUAGES 23

Software specification

Another area in which GF has been used is the formal software specification. Semi-
formal software specification languages such as the Object Constraint Language (OCL)
are widely used in industry, but a gap exists between them and informal natural lan-
guage specifications (Ranta, 2004). In (Hähnle et al., 2002) the authors describe the
design of a computer-aided software engineering (CASE) tool which aims to bridge this
gap by using GF to “combine linguistic and logical models” and provide a natural lan-
guage interface to formal software specifications. This went on to form part of the KeY
system, and has been used successfully in translating the formal specifications of the
Java Card API from OCL into English (Johannisson, 2005).

WebALT

One of the largest projects to date to use GF successfully is the WebALT project. Conclu-
ded in 2007 and since turned into a commercial entity, WebAlt combined existing stan-
dards for representing mathematics with GF to create a body of language-independent
mathematical exercises for educational purposes. Thus, mathematical content written
using the WebAlt authoring tool can be easily localized to any European language/cul-
ture included in the WebAlt set of GF grammars (WebALT Consortium, 2007).

3.4.6 GF and CNLs

The use of GF for building controlled languages shall be discussed in more detail in
chapter 6, yet at this stage we will just indicate some work which has already been done
in the area. Ranta and Angelov (2009) consider the use of GF as a tool for implementing
CNLs, using the the ACE language (see § 3.2.1) as a case study. The authors claim to have
found the implementation “quick and mostly smooth”, and subsequently proceeded to
port it to French, German, and Swedish. The main problem encountered was that certain
ACE structures are not covered by the GF Resource Library, as they are in fact considered
to be linguistically incorrect.

3.5 Chapter summary

This chapter covered the basics of controlled natural languages (CNLs), and the benefits
they offer to the area of NLP. We listed some of the major works in the area of CNLs, and
considered the issues involved in their use. In discussing language grammar formalisms
we introduced the Grammatical Framework (GF), explaining its features, discussing
some of the projects in which it has successfully been employed, and pointing out its
relevance to the area of controlled languages.

Chapter 4

BanaNomic
This chapter introduces the game of Nomic and its unique concept of self-amending
rules. We take a brief look at the many variants of Nomic, with particular focus on
the only known automated version of the game, PerlNomic. We then go on to define
our own version of Nomic called BanaNomic, explaining its basic features and how
the game is played.

4.1 The game of Nomic

Games of all types are always governed by some set of rules which define what can and
cannot be done, and what the consequences of various actions and game states may be.
For example, one of the rules of Monopoly1 famously states that:

When a player passes “Go” they may collect £200.

Rules likes this are very much based on the basic contract concepts discussed so far
(namely obligation, permission and prohibition), and are assumed to be static and infal-
lible.

The game of Nomic, originally conceived by Peter Suber in his book The Paradox
of Self-Amendment (Suber, 1990), is a somewhat unconventional game where the only
move possible is to actually change the rules of the game themselves. The game starts
with an initial rule set, and with every turn players propose additions and amendments
to this list and vote on other players’ proposals. All the rules in the game are subject
to amendment, including how victory is defined and who is eligible to play. Loosely
modelled on real-life government systems, Nomic is a game based on the fundamental
contracts concepts with the additional concepts of self-reference and self-amendment.

1The game of Monopoly is trademark of Hasbro, Inc.

24

CHAPTER 4. BANANOMIC 25

4.1.1 Game objectives

Regular types of games are played with fixed, clearly defined goals such as earning the
most points, being the last player standing, and so on. To this end, all players play
with exactly the same objectives. However the same cannot be said of Nomic; since the
victory conditions for the game are themselves written as rules—and therefore open to
modification—the game’s objectives are actually “moving targets”, and different players
may have different sets of goals to each other. Consider the following situation:

Rule 1 The player with the most points wins the game.
Rule 2 Players earn 15 points for successfully amending a rule.
George has 20 points. It is his turn to play.
Olivia has 10 points.

I this game George is currently winning, but he is worried that Olivia will quickly
overtake him if she simply amends one rule successfully. Thus, he cunningly changes
rule 2 to:

Rule 2 Players earn no points for successfully amending a rule.

Now Olivia can never earn enough points to have more than George—but she doesn’t
need to. By simply changing rule 1 to:

Rule 1 The player with the least points wins the game.

Olivia has instantly put herself in a winning position!
This small example is just one of many ways in which playing Nomic is really quite

unlike any other game. Every single game of Nomic can turn out differently to the last,
and no one can tell ahead of time how a game will turn out. In fact, it has even been said
that a game of Nomic has the potential to become any other game (Vreeswijk, 1995).

4.1.2 Flavours of Nomic

A large number of Nomic variants exist, and hundreds of games have been played by
thousands of players worldwide for over 20 years (Phair and Bliss, 2005). Originally
maintained through electronic mailing lists, most Nomic games are now maintained
online through bulletin boards and wikis2.

One example of an active Nomic game (at the time of writing) is B Nomic3, which
dates back ten years to 2000. The game action happens via a mailing list, and a summary
of the state of the game is maintained as a wiki. The layout of the game is quite elabo-
rate, with different “ministries” taking care of specific tasks; These include an electoral

2Judging by the Nomic games lists at http://www.nomic.net/~nomicwiki/index.php/NomicDatabase
and http://www.nomic.net/archive.html

3Online at http://b.nomic.net/index.php/Main_Page

http://www.nomic.net/~nomicwiki/index.php/NomicDatabase
http://www.nomic.net/archive.html
http://b.nomic.net/index.php/Main_Page

CHAPTER 4. BANANOMIC 26

commission, a judiciary and “ministry of ministries”. Changes to the game are enacted
through a proposition-voting process.

Despite the fact that most Nomic games are maintained electronically, very few at-
tempts seem to have been made at formalising the game such that its rules and actions
may be automatically verifiable.

4.1.3 Attempts at formalising Nomic

Vreeswijk (1995) was the first to speculate about the possibility of formalising and auto-
mating Nomic. The author’s interest lay in creating a completely automatic Nomic simu-
lator that would allow the analysis of self-modifying communications protocols. Much
like voting systems used in everyday life, Nomic’s voting system has a self-regulating
aspect to it which protects the rules from “weird proposals” (Vreeswijk, 1995). The in-
terest in studying such protocols is their potential use in distributed computing and
multi-agent systems, however the authors do not pursue the building of any actual
systems.

Nomic as ontologies

Some work has in fact been carried out in representing Nomic rules as an OWL ontology.
As part of the ESTRELLA project an, ontology of Nomic rules was implemented in
LKIF-Core, aiming to “organize the structured information” present in a set of Nomic
rules and to “allow reasoning and problem solving” over that knowledge (Klarman
et al., 2008). Some interesting issues arose regarding the concepts of change and version
control within the represented knowledge, however this system as such does not allow
active playing of the game itself.

4.1.4 PerlNomic

PerlNomic (Phair and Bliss, 2005) is the only computer-based Nomic variant found which
employs automatic rule checking. Rather than being played in a natural language like
English, rules in the game are actually arbitrary snippets of code written in the Perl
programming language. The game turned out to be quite a success, with five games
running over 3 years and attracting roughly three thousand visitors worldwide (Phair
and Bliss, 2005).

Avoiding ambiguity

The idea of playing a game purely in Perl code may seem cumbersome, but in fact
there is a major advantage to this kind of approach—the inherent lack of ambiguity in
computer languages. Unlike in the real world where natural language ambiguities in the

CHAPTER 4. BANANOMIC 27

law must be assessed by human judges, in PerlNomic the only judge required is the Perl
interpretor itself. By taking advantage of the strict structure of Perl, the authors were
able to build a formal version of Nomic with modest implementational requirements
and a sizeable user base (Phair and Bliss, 2005).

Rules as code

The idea that every rule in the game is actually a Perl script opens up some interesting
possibilities. Apart from the ability to patch any other script running on the server
hosting the game, players would easily be able to write proposals which replace the
game interpreter with their own version, or even create completely unrelated services
on the host machine (such as chat or email server) (Phair and Bliss, 2005). In this sense
the game is quite flexible in terms of what players are allowed to create.

Laws & limitations

Despite this apparent flexibility of PerlNomic, it of course is not without its limitations.
Since the rules are simply snippets of Perl code, the scope of the game is essentially
limited to the actions that are performable from within the Perl interpreter; in the words
of the authors, “there can be no rules about hot dogs in this game” (Phair and Bliss,
2005).

While players of PerlNomic are able to add any scripts they like, these scripts are still
ultimately limited by a hierarchy of lower-level structures—the Perl interpretor, opera-
ting system kernel, processor instruction set and so on. However—without getting too
philosophical—it is pertinent to note at at some level there will always be a limiting
factor to self-amendment capabilities, whether it is technical or rooted in human com-
munication itself.

4.2 BanaNomic

In line with the aims of the project, a version of Nomic was to be implemented using
a suitable contract logic, upon which a suitable CNL interface could be built. Rather
than attempt to implement an already existing flavour of Nomic, we went about desi-
gning our own take on the game, tailored to our specific needs and restrictions. Thus—
inspired by the traditional geek affinity for all things simian—BanaNomic was born.

For a full explanation of the game, refer to the User Guide in appendix A. Examples
of BanaNomic gameplay, taken directly from the project’s evaluation period, can be found
in appendix B.

CHAPTER 4. BANANOMIC 28

4.2.1 The setting

Of bananas, monkeys and trees

The setting for BanaNomic was chosen to provide some light-hearted fun. Each user
of the game plays the role of a monkey living in a tree with other monkeys, fighting
to pick bananas and defend their own stash. Governing rainforest life are a series of
rules dictating what one can, cannot, and must do. These rules cannot be violated, but
players are allowed to add and remove rules at will. Thus, as the tree contains only a
finite number of bananas, players must use their wits to manipulate the rules to their
advantage and collect the most bananas before the end of the game.

The tree itself is split into four horizontal sections, from bottom to top: the forest
floor, under story, canopy and emergents level. Players can climb up and down the tree
and pick bananas freely, except that no bananas grow at the forest floor level.

Playing turns

Players start the game on the forest floor with zero bananas each. With each turn, a
player may (depending on rule constraints) carry out any of the basic actions below,
enact a new rule and/or abolish a current one. The game is governed by banana-
time—which is coincidentally synchronised to increment one b’clock every 24 hours—
and players are allowed to play up to once per day.

Game actions

While manipulating the rules is a vital part of BanaNomic’s gameplay, a number of basic
actions are also included in order to make the game more accessible to users. These are:

• Climb up or down the tree to change one’s current level.
• Pick a banana from the tree and add it to one’s stash. Players cannot pick bananas

from the forest floor, and so would need to climb up before being able to do so.
• Throw a banana at another player on the same level, which will cause the other

player to lose all their bananas and end up on the forest floor again.

4.2.2 Rules of the rainforest

Rule manipulation and voting

While in Nomic the modification of rules is governed by a democratic voting process (at
least initially), in BanaNomic this was dropped in favour of a direct enactment and abo-
lishment system. Including a voting system in the game would not have been a problem
from an implementation perspective; however because of the limited time available for
evaluating the project, this choice was made to ensure that users can get their hands

CHAPTER 4. BANANOMIC 29

dirty with amending the rules from the get-go, without cumbersome voting processes
taking up too much time.

Initial rules

The initial rules which are active at the start of the game were fairly basic:

1. All players are permitted to climb up the tree, climb down the tree, pick a banana,
and throw bananas at other players.

2. At some point in the game, every player is obliged to enact a new rule.
3. At all times from 3 b’clock onwards, all players are permitted to abolish an existing

rule.
4. If any player has more than 10 bananas, then all players are forbidden from thro-

wing bananas at other players.

4.3 Chapter summary

We started this chapter by introducing the self-amending game of Nomic, discussing
how and why it’s played, its numerous variants and some approaches made at forma-
lising it. After paying particular attention to the only known automated version of the
game, PerlNomic, we defined our own take on Nomic called BanaNomic and explained
its features. Chapters 5 and 6 go on to describe the design of a contract logic and CNL
grammar for BanaNomic, respectively.

Chapter 5

A contract logic for Nomic
In this chapter we describe the design of a contract logic for the game of BanaNomic,
based on existing works but customised to our needs. After defining the grammar in
detail, we then go on to discuss its informal semantics and finally comment on its
differences from other contract languages encountered in the literature.

5.1 Formal grammar

The contract grammar devised for BanaNomic is based on the OPP-logic as defined in
Pace and Schneider (2009), with a number of simplifications which are justified in § 5.4.
Where applicable, the same notation has been used.

Time

A simple category to represent a finite amount of time. It is also ‘nullable’, to allow for
open-ended time clauses (see § 5.3.4). Time in BanaNomic is governed by a global clock
which counts upwards from zero at some pre-defined interval, and all instances of Time
in the logic represent absolute temporal values. Thus there is no concept of x time units
before or y time units from now.

Player

A PlayerName is used to refer to a player uniquely by their name and is either a type
synonym for a string or the generic player φ. The generic player is a particular instance
of this category used for building clauses which refer to all/any player in the game (see
§ 5.3.5). The Player itself is simply a function which given a PlayerName will return that
player’s points and level as integers.

30

CHAPTER 5. A CONTRACT LOGIC FOR NOMIC 31

PlayerName = String | φ

Player : : PlayerName→ 〈Int, Int〉

Rule

This is a simple function which, given a unique RuleID, will return that rule’s corres-
ponding Contract.

Rule : : 〈RuleID〉 → Contract

Contract

A contract is a clause which ultimately terminates as a deontic expression (except for the
empty contract ε). The Contract category allows operations over such clauses, providing
choice (+) between two contracts, always (�) and sometimes (♦) operators (optionally
over a specified time period—see § 5.3.4), and two conditional operators. The single-
triangles (/ .) will evaluate to either the first or second contract, depending on whether
the given deontic expression is active within the language or not. The double triangles
(// ..) behave similarly, by evaluating the given Query.

Contract = ε | DeonticExp | Contract + Contract

| � [t1, t2] Contract | ♦ [t1, t2] Contract

| Contract / DeonticExp . Contract

| Contract // Query .. Contract

The Contract category contains no operators for negation, repetition, sequencing or che-
cking for the presence of an action. In addition, CTD/CTP operators are not directly
supported in the logic (for a discussion why, see § 5.4).

Deontic expression

Deontic expressions serve as the basic element for the logic, expressing a single obliga-
tion (O), permission (P) or prohibition (F). Each deontic expression is tied to a player,
although for convenience this could also be the generic player (φ), which is taken to

CHAPTER 5. A CONTRACT LOGIC FOR NOMIC 32

represent all players or any player, depending on context (see § 5.3.5).

DeonticExp = O (PlayerName : Activity)

| P (PlayerName : Activity)

| F (PlayerName : Activity)

Although the absence of permission (or obligation) will be interpreted as implicit pro-
hibition, the F operator is still included for overriding other clauses. Thus, the deontic
operators have the following order of precedence: F ≥ O ≥ P

Query

The query will evaluate to true or false, based on its parameters and the current state
of the game. The operators over queries provided are negation (query), conjunction (&)
and disjunction (+). Two helper functions Points and Level are defined for querying
player information.

Query = Query | Query & Query | Query + Query

| Points (PlayerName) > Int

| Points (PlayerName) < Int

| Points (PlayerName) == Int

| Level (PlayerName) == Int

where

Points : : PlayerName→ Int

Level : : PlayerName→ Int

Activity

An activity is a wrapper around one or more atomic actions. Only two operations over
activities are provided—choice (+) and concurrency (&).

Activity = ε | Action | Activity + Activity | Activity & Activity

The initial intention was to also include sometimes and always operators, however these
were later omitted to avoid added complications with the semantics. Operators for
negation, repetition and sequencing were also not included.

CHAPTER 5. A CONTRACT LOGIC FOR NOMIC 33

Action

The Action category represents a single, atomic action. The possible actions available in
the game are “hardcoded” in the grammar, rather than having parametric constructors.
Also no operations over actions are provided, as these are handled by the Activity
category.

Action = ClimbUp | ClimbDown | PickBanana

| ThrowBanana (PlayerName)

| Enact (Contract)† | Abolish (RuleID)†

†: Note that when referring the general ‘concept’ of enacting and abolishing rules, we
will use the Enact and Abolish constructors without parameters (see contract examples
in § 5.2).

Gamestate

The Gamestate category represents an entire BanaNomic game at a given point in time.
It is composed of a tuple containing the following items:

Gamestate : : 〈T, B, P, R, O〉
where

T : : 〈Time〉 is the current game time

B : : Int is the number of bananas left on the tree

P : : [〈PlayerName, Int, Int〉] are the players with their points and levels

R : : [〈RuleID, Contract〉] are the currently active game rules

O : : [DeonticExp] are the pending and satisfied obligations

5.2 Contract examples

Using the logic defined above, a few example contracts and their natural language rea-
dings are given below.

1. O (“Paul” : ThrowBanana (“Ringo”))
Paul is obliged to throw a banana at Ringo.

2. P (“John” : PickBanana) // (Points (“John”) < 5) .. ε

If John has less than 5 bananas then he is permitted to pick one (no clause is defined
otherwise).

CHAPTER 5. A CONTRACT LOGIC FOR NOMIC 34

3. ε / P (“George” : Enact) . ♦ [ε, 9] O (“George” : Abolish)
If George is not permitted to enact a rule, then he shall be obliged to abolish a rule at some
point before 9 b’clock.

4. � [3, ε] F (φ : ClimbUp & PickBanana)
At all points from 3 b’clock onwards, all players are forbidden from concurrently climbing
up the tree and picking a banana.

5.3 Semantics

5.3.1 Deontic inference and precedence

Closed world

The grammar will operate under a closed world assumption, where the absence of explicit
permission implies prohibition. In other words, players are forbidden from carrying out
an action unless there exists a clause permitting them to do so.

Obligation and permission

One design choice that arises in designing a contract grammar is the relationship bet-
ween permission and obligation. Should it be possible to be obliged to do something
but not permitted to do it? In this project we avoided this tricky situation altogether, by
simply stating that wherever an obligation to carry out an action exists, permission to
do that action is inherently implied.

Prohibition is king

Despite the fact that prohibition may be defined as absence of permission (or obligation),
the forbidden operator F was still included to allow the possibility of overriding previous
permissions. Thus the deontic operators are given the following order of precedence:
F ≥ O ≥ P. Note that this still allows for a similar situation as that described above,
where a user may be obliged to perform an action but yet forbidden to do so.

5.3.2 Choice

Certain clauses in the grammar involve an element of choice. Specifically, these are
the Choice operators over contracts and activities, and the sometimes contract operator.
Various strategies for implementing choice are available (see § 2.3.3), but for the sake
of simplicity—both semantically and in the implementation—all choices in BanaNomic
shall be implemented as external/angelic. Note that the disjunction operator between

CHAPTER 5. A CONTRACT LOGIC FOR NOMIC 35

queries does not constitute choice in the same way, and has no related concepts of
internal/external choice.

5.3.3 Permanent contracts

Any contract which is not enclosed within a sometimes or always clause is called a per-
manent contract. For permissions and prohibitions, permanent contracts are effective at
every time interval without exception. Permanent obligations behave somewhat diffe-
rently; while they are instantly effective and must be satisfied immediately, once they
are fulfilled they will never again be re-enforced. In other words, they must be satisfied
at once, and only once.

5.3.4 Timely contracts

Contracts enclosed within sometimes or always clauses are effective for only certain time
frames. Both clauses may have specific start/end times or may be open ended, as sum-
marised in tables 5.1 and 5.2.

Sometimes

Any contract enclosed in a sometimes clause means that it will only be active or satisfiable
once within the given time frame (see table 5.1). For permissions and obligations, this
means that the action in question may/must be carried out only once. This choice is
made by the player in question, i.e. external/angelic choice. A prohibitive contract
inside a sometimes clause has little purpose.

Expression Description

♦ [Int, Int] Clause is valid once between t1 and t2.
♦ [Int, ε] No end; clause is valid once from t1 onwards.
♦ [ε, Int] No beginning; clause is valid once before t2.
♦ [ε, ε] No beginning and no end; clause is valid once.

Table 5.1: Time limits for sometimes clauses.

Always

Contrary to sometimes clauses, contracts within an always clause are effective at every
point within the given time frame (see table 5.2). Of particular interest, always obli-
gations must be satisfied at every time interval until the contract is no longer active.

CHAPTER 5. A CONTRACT LOGIC FOR NOMIC 36

Expression Description

� [Int, Int] Clause is valid at every point between t1 and t2.
� [Int, ε] No end; clause is valid at every point from t1 onwards.
� [ε, Int] No beginning; clause is valid at every point before t2.
� [ε, ε] No beginning and no end; clause is valid at every point.

Table 5.2: Time limits for always clauses.

5.3.5 The generic player

Individual players in the game are identified by a unique player name, but the generic
player φ is a special case for referring to all or any players with a single statement. The
any-all distinction is determined entirely by the context; the generic player as the subject
of the clause is taken to mean “all players”, while as the predicate it is interpreted as
“any player”. Thus a clause like

O (φ : ThrowBanana(φ))

would be interpreted as “all players are obliged to throw a banana at any player”.

5.3.6 Rule manipulation

Being modelled on government systems, rule manipulation in Nomic is typically de-
mocratic; that is, proposals for rule additions or amendments are made, they are voted
upon, and the motion is passed or rejected. However in our version of the game, we
opted for a much simpler direct-manipulation model, where any player may enact or
abolish rules without going through a voting process first (provided however that they
are permitted to do so).

The reasons for this simplification of the game are twofold; firstly, knowing that the
evaluation period available for the project would not be more than two weeks, having
a cumbersome proposal-voting system would likely mean that many rules never get to
see the light of day, and very few changes to the game’s active rule set would actually be
observed. Secondly, the implementation of such a system would be non-trivial, requi-
ring specific handling of propose and vote actions, keeping track of proposals over time,
and introducing the issues of permissions and obligations for players to vote. While
this would have certainly been interesting to implement and observe, time restrictions
forced us to adopt a much simpler rule manipulation system.

Effect on gamestate

Providing that they are permitted, enact and abolish actions have an immediate effect on
the gamestate. In the case of rule enactment, the new rule contract is appending to the

CHAPTER 5. A CONTRACT LOGIC FOR NOMIC 37

game’s rule set, and any obligations arising out of this new rule are added to the game’s
obligations list.

For rule abolishment, the respective rule is removed from the game’s list of rules. A
special case arises when a rule consisting of a one-time obligation is removed. Consi-
der table 5.3; initially two sometimes obligations are enacted, and at 5 b’clock Heather
fulfils her obligation, meaning that only Paul’s remains pending. But if the rule itself
is abolished at 10 b’clock, should Paul’s obligation also be removed? In BanaNomic we
indeed opt to remove pending obligations, although as in shown in this case the issue
of ‘fairness’ towards other players arises.

Time Actions Pending Obligations

1 Enact the following rules:
♦ [ε, ε] O (Heather : PickBanana)
♦ [ε, ε] O (Paul : PickBanana)

Heather : PickBanana
Paul : PickBanana

...
...

...
5 Heather : PickBanana Paul : PickBanana
...

...
...

10 Abolish both rules from (1). ?

Table 5.3: Example showing the abolition of a clause containing a one-time obligation.

5.4 Comparison with other works

While being based on the OPP-logic from (Pace and Schneider, 2009), the BanaNomic
contract logic contains some significant omissions from the original for reasons of sim-
plification. To begin with, the Contract category contains no operators for negation,
repetition or sequencing as these were seen to be do little to improve the expressiveness
of the logic at this stage. The checking for the presence of an action presented itself as
a feature of dubious use, however in its place the query-conditional operator // .. was
added as this was seen to be of more relevance to the game.

In addition to this, a deontic-conditional / . operator was also provided, which
evaluates one clause or another depending on whether the specified deontic expression
is present in the contract. This allows for clauses of the type:

If Maureen is permitted to pick a banana, then . . .

Unfortunately CTD/CTP operators are not directly supported in the logic, mainly
due to the obstacles encountered in implementation. Rather than using reparation
clauses, we rely on explicit enforcement of obligations and prohibitions, effectively ma-
king it impossible for users to neglect their obligations or do something which they are
not permitted to do. This is achieved through the implementation itself (see § 7.5.1).

CHAPTER 5. A CONTRACT LOGIC FOR NOMIC 38

The Activity category serves the same purpose as the CompAction class in Pace and
Schneider (2009), that is to provide expressions over actions. In our case, all operators
are “pushed up” to Activity, and the Action category consists purely of the game’s
atomic actions.

With regards the Activity class, the initial intention was to also include the some-
times (♦) and always (�) operators, which would allow for further investigation into the
internal/external choice issue (see § 2.3.3). However, despite this, their addition would
have also introduced a host of other semantic problems which were beyond the scope
of this project, and so they were ultimately omitted from the logic too. Operators for
negation, repetition and sequencing over activities were also not included for the same
reasons as described in the case of contracts, above.

5.5 Chapter summary

In going through and describing the contract logic for BanaNomic and its semantic treat-
ment, we noted and explained the deviations from the original logic on which ours is
based. In addition, limitations made on the game of Nomic itself are discussed, with a
particular look at our simplified version of the rule proposal-voting system.

Chapter 6

The language of BanaNomic
This chapter covers the design of the CNL interface for BanaNomic, based on the
contract logic defined in the previous chapter. We first describe the design approach
taken, mentioning a number of common problem areas in NLP systems and how
they were handled. Following this, we then go into the design of the grammar in GF,
with particular attention paid to the abstract and concrete syntaxes defined and their
relation to the BanaNomic contract logic.

6.1 Designing the CNL

Much like the paradigm of GF itself, the linguistic interface for BanaNomic was designed
with a focus on linearising into English the types of clauses already defined in the
contract logic (chapter 5) for the game. In other words, the CNL built was not designed
in terms of its linguistic boundaries, but rather as a collection of phrase structures which
map directly onto the various constructs of the formal contract logic.

6.1.1 Template-based linearisations

In the simplest cases, the CNL for BanaNomic takes a straightforward template approach,
combining together a number of canned phrases to form a complete sentence. While
very basic, this approach works well for a number of uncomplicated situations. Table 6.1
shows some examples of formal constructs which follow this straightforward linearisa-
tion.

The degree to which this template approach is suitable depends on the natural lan-
guage in question, and the level of linguistic correctness to which one wishes to adhere.
For example, by taking this approach our CNL produces the following phrase:

Expression F (“George′′ : ClimbDown)
Linearisation player “George” is forbidden to climb down the tree

39

CHAPTER 6. THE LANGUAGE OF BANANOMIC 40

Expression Action : : ThrowBanana (PlayerName)
Linearisation throw a banana at

Expression DeonticExp : : O (PlayerName : Activity)
Linearisation is obliged to

Expression Contract : : � [Time, Time] Contract
Linearisation At all times between and

Expression Contract : : Contract // Query .. Contract
Linearisation If then otherwise

Table 6.1: Examples of straightforward canned text linearisations.

While a more natural way of saying this would be to use “forbidden from climbing
down”, it cannot be disputed that the former is nevertheless completely understandable
and within the limits of acceptability for a controlled language.

This same limitation also applies to inflections for noun number (i.e. singular/plu-
ral), for example:

Expression Contract // (Points (“John′′) > 1) .. ε

Linearisation if player “John” has more than 1 bananas then

Correctly handling such cases requires varying levels of complexity. The English plural
example above is a near-trivial case, but more involved linguistic processes such as verb
conjugation for aspect and tense would of course require a more in-depth treatment.

6.1.2 Semantic disambiguation

A slightly more complex situation which is to be handled by the BanaNomic CNL is that
of context-sensitive linearisation. As mentioned in § 5.3.5, the GenericPlayer category
may refer to either every player or any player, depending on the context where it appears
in the contract clause. This is demonstrated in the statement:

Expression P (GenericPlayer : ThrowBanana (GenericPlayer))
Linearisation every player is permitted to throw a banana at any player

Note how the former and latter occurrences of GenericPlayer are linearised diffe-
rently, as they occur in different contexts in the clause. This example also demonstrates
the limited existential and universal quantification capabilities available in the CNL (see
§ 6.1.4). For more detail on how this is achieved using GF, please refer to § 7.5.2.

6.1.3 Punctuation

Punctuation is one language aspect which shall not be covered by the CNL designed for
this project, and is in fact completely omitted from the language grammar. The main
reason for this is to simplify the text input process for the user. The types of phrases

CHAPTER 6. THE LANGUAGE OF BANANOMIC 41

generated in BanaNomic are generally not too long and can get away with having no
punctuation; however for larger projects this would be an important addition to the
CNL layer.

6.1.4 Problem areas

Certain kinds of linguistic phenomena often create problem areas for the designers of
NLP systems, including pronouns, quantifiers and the handling temporal notions. These
are briefly discussed below, along with how they were tackled (or avoided) in the Bana-
Nomic CNL.

Pronouns

Pronouns are words which are used in place of nouns to refer to some previously men-
tioned entity (known as the antecedent). For example, in the sentence1

The monkeys ate the bananas because they were hungry.

the pronoun they is used in place of “the monkeys”. The problem with pronouns is
that the person or object to which they refer is usually implied from some higher-level
knowledge about the situation, which often leads to ambiguous situations. Consider the
sentences:

The monkeys ate the bananas because they were ripe.
The monkeys ate the bananas because they were in the tree.

In the first case, we would generally infer that they is now referring to “the bananas”;
but how did we make that deduction? The fact is that determining which antecedent a
pronoun refers to (or anaphor resolution) often requires a high degree of outside know-
ledge, which is notoriously hard to capture in a formal system. The second sentence is
an even worse case, because now it is no longer clear—even to us—who or what they
refers to.

Pronouns are a prime source of problems in NLP systems, however some CNLs
do provide limited support for them (Fuchs et al., 2008; Schwitter, 2002). In our case,
pronouns are simply not handled by the grammar and all references to people or object
nouns are explicit.

Quantification

Quantifiers are a class of determiners which indicate quantity, such as “some”, “most”,
“every” and so on. The use of quantification in natural languages is another problem
area for NLP, again due to the ambiguities it often causes. For example, in the sentence2

1Example taken from http://en.wikipedia.org/wiki/Anaphora_(linguistics)#Examples
2Example taken from http://en.wikipedia.org/wiki/Quantification#Natural_language

http://en.wikipedia.org/wiki/Anaphora_(linguistics)#Examples
http://en.wikipedia.org/wiki/Quantification#Natural_language

CHAPTER 6. THE LANGUAGE OF BANANOMIC 42

Someone gets mugged in New York every 10 minutes.

it is not technically clear whether or not it is the same person who is getting mugged.
As with pronouns, we generally solve such ambiguities with the help of external infor-
mation or “general knowledge”; but there is no direct way of doing this formally.

Despite this potential for ambiguity, restricted quantification has been successfully
implemented in some controlled languages (Fuchs et al., 2008; Schwitter, 2002). Our
own BanaNomic CNL also includes the existential and universal quantification operators,
which are linearised as any player and every player respectively (see § 6.1.2 above).

Temporal notions

One final problem area which we shall look at is the various notions of temporality used
in natural language. These include:

Absolute time My birthday is on the 14th of July.

Relative time Your birthday is three days after mine.

Duration The party will be two hours long.

Sequence Make a wish and then blow out the candles.

Concurrency Blow out the candles while we sing.

Dependency You can open your presents after cutting the cake.

Each of these examples represents a specific way of reasoning about time and the re-
lationship between events. The CNL designed for this project specifically covers the
temporal notions defined in the underlying contract logic—i.e. before, between, after, at
some point, at all times and concurrently (refer to the logic as defined in chapter 5). These
notions are included in the CNL in a rigid manner, in that they can only be used in the
precise ways defined by the logic. For example, the sentence

Player “John” is obliged to concurrently enact a new rule and climb up the tree.

is a valid BanaNomic statement, but

Player “John” is obliged to enact a new rule while climbing up the tree.

is not considered valid, despite having the same meaning.

6.2 Grammar design in GF

In this section we explain the grammar design using GF’s abstract/concrete syntax sys-
tem (see § 3.4.1). More complete examples of the grammar source code can be found in
appendix D.2.

CHAPTER 6. THE LANGUAGE OF BANANOMIC 43

6.2.1 Abstract syntax

Given the declarative nature of GF grammars, the abstract syntax of BanaNomic could
very easily be implemented from its formal logic. For example, the abstract GF equiva-
lent for the definition of the Contract category (see § 5.1) would be as follows:

cat
Contract ; [Contract]{2} ;

fun
C_Empty : Contract ;
C_Deontic : DeonticExp -> Contract ;
C_Choice : [Contract] -> Contract ;
C_Always : Time -> Time -> Contract -> Contract ;
C_Sometimes : Time -> Time -> Contract -> Contract ;
C_Conditional : DeonticExp -> Contract -> Contract -> Contract ;
C_Query : Query -> Contract -> Contract -> Contract ;

Note how the Choice constructor is not defined between just two contracts, but over
an indeterminate number of contracts represented as a list, i.e. [Contract]. The same
applies for the choice and concurrency operators for the Activity category. The rest of
the abstract grammar is implemented in a similar way, closely matching the contract
logic defined in chapter 5.

One point of interest is that while the Enact and Abolish actions both take arguments
in the contract logic, in the linguistic case we do not require them to, and they are always
treated as generic actions:

cat
Action ;

fun
An_ClimbUp : Action ;
. . .
An_Enact : Action ;
An_Abolish : Action ;

Abstract syntax examples

To show the direct conversion from formal contract logic to GF abstract syntax, table 6.2
re-lists the logic examples from § 5.2 along with their equivalents in GF syntax tree
representation.

6.2.2 Concrete English syntax

For the design of the concrete grammar, each of the functions from the abstract syntax
was first given a template-like linearisation as described in § 6.1.1. While suitable for
many cases, certain constructs required a more involved approach in order to produce
natural linearisations. A good example of this is the timely contract clauses, C_Always

CHAPTER 6. THE LANGUAGE OF BANANOMIC 44

Formal O (“Paul” : ThrowBanana (“Ringo”))
Abstract GF C_Deontic

(DE_Obliged "Paul" (A_Action (An_ThrowBanana "Ringo")))

Formal P (“John” : PickBanana) // (Points (“John”) < 5) .. ε
Abstract GF C_Query (Q_PointsLt "John" 5)

(C_Deontic (DE_Permitted "John" (A_Action An_PickBanana)))
C_Empty

Formal ε / P (“George” : Enact) . ♦ [ε, 9] O (“George” : Abolish)
Abstract GF C_Conditional (DE_Permitted "George" (A_Action An_Enact))

C_Empty
(C_Sometimes T_None (T_Time 9)

(DE_Obliged "George" (A_Action An_Abolish)))

Formal � [3, ε] F (φ : ClimbUp & PickBanana)
Abstract GF C_Always (T_Time 3) T_None

(DE_Forbidden "GENERIC" (A_Concurrent (BaseActivity
(A_Action An_ClimbUp) (A_Action An_PickBanana))))

Table 6.2: Contract logic examples from § 5.2 and their equivalents in GF tree representation.

and C_Sometimes. In both of these clauses, either of the two Time parameters may or
may not be set. Each of these cases carries a different semantic meaning, and therefore
requires a particular linguistic linearisation. This behaviour—which is determined at
runtime—is summarised in table 6.3 for the C_Always case.

Abstract Clause Linearisation

C_Always (T_None) (T_None) . . . at all times . . .
C_Always (T_Time 1) (T_None) . . . at all times from 1 . . .
C_Always (T_None) (T_Time 9) . . . at all times before 9 . . .
C_Always (T_Time 1) (T_Time 9) . . . at all times between 1 and 9 . . .

Table 6.3: Example of different possible linearisations of a single lexical function.

6.3 Chapter summary

By starting out with a simple template-based approach to CNL design, we discussed the
common issues involved in designing NLP systems and explained how the basic tem-
plate approach could be supplemented to accommodate these requirements and achieve
an acceptable degree of ‘naturalness’. We then went into the design of the grammar
in GF, demonstrating the similarities between the abstract syntax and the BanaNomic
contract logic, and explaining the English linearisations of the grammar through the
concrete GF syntax.

Chapter 7

Implementation
Starting with an overview of the completed system, we look at each major module in
detail and discuss the implementation choices made, the technologies used and any
particular points of interest. Finally, the unforeseen issues which arose during the
implementation phase are discussed, along with how they were dealt with.

7.1 System overview

The the design of a working implementation of BanaNomic, the following system com-
ponents were identified:

1. A contract logic evaluator which would process a game’s rules and determine the
validity of player actions.

2. A CNL grammar and library which would handle the parsing and generation
between the formal contract logic and English.

3. A game application which would keep track of game states and provide an inter-
face for users.

Since BanaNomic is a game which needed to be accessed by various users simulta-
neously for evaluation purposes, the obvious choice was to implement the game as a
web application, hosted on the internet for all to access. This imposed a client-server
architecture on the system, which is outlined as a block diagram in figure 7.1. Each
major system module is described individually in the following sections.

45

CHAPTER 7. IMPLEMENTATION 46

Web Browser

Server Backend

Java Servlet GWT Web App
JavaScript

Game Evaluator
Compiled Haskell

XML

Persistence
MySQL

Command
Line Call

GWT RPC

GF Grammar
JavaScript

Server Client

Figure 7.1: System block diagram.

7.2 Client-side web application

7.2.1 Google Web Toolkit

The Google Web Toolkit (GWT)1 is a set of development tools for building modern,
browser-based, AJAX-intensive web applications. It allows developers to write their
application using a subset of Java, which is then converted by the GWT into cross-
browser compatible JavaScript which is run entirely on the server. It also provides
the ability to make asynchronous server calls (known as GWT RPC) for an AJAX-rich
experience. GWT is used by Google itself in applications such as Google Wave2, as well
as by the GF developers in their sample applications distributed with the framework
(see § 3.4.3).

While it is possible to use GWT to build only the client side of a web application, it
was also used for developing the server backend for this project. While server calls still
need to be made asynchronously through GWT RPC; the advantage of this setup is that
plain old Java objects (POJOs) can be passed directly from client to server by making use
of Java serialization. In this case the server-side code is not restricted to GWT’s subset
of Java.

The BanaNomic application was developed using the most recent version of the
toolkit—GWT 2.0—and the Google Plugin3 for Eclipse4.

7.2.2 Grammatical Framework

GF is used in BanaNomic for providing a natural language (NL) interface to the formal
contract logic (CL). This involves text generation/linearisation (CL → NL) and parsing

1http://code.google.com/webtoolkit/
2http://wave.google.com/
3http://code.google.com/eclipse/
4Eclipse 3.5. http://www.eclipse.org/

http://code.google.com/webtoolkit/
http://wave.google.com/
http://code.google.com/eclipse/
http://www.eclipse.org/

CHAPTER 7. IMPLEMENTATION 47

(NL→ CL), both of which are concerned primarily with the user. In other words, all the
NL generation and parsing is done for the user interface. Because there is no internal
processing which is done in terms of the natural language, all code associated with it
can in fact live on the client side of the application.

This use of GF solely on the side of the client is made possible through the fra-
mework’s inbuilt capability for compiling GF grammars directly into JavaScript. By
including the GF JavaScript library which is distributed with the framework, all the lan-
guage tools required—namely parsing and generation—became available to the rest of
client application through GWT’s JavaScript Native Interface (JSNI).

Input methods

The guided input methods developed for BanaNomic are closely based on those descri-
bed in § 3.4.3, renamed slightly to the “suggest panel” and “fridge magnets” methods.
While the features were re-coded from scratch for this project, the source code distri-
buted with the GF framework was nevertheless consulted. One major difference in the
implementations is that while the GF versions use a separate web service for generating
the completion suggestions5, in BanaNomic everything was kept at the client side. This
would allow for a simpler server setup, while also avoiding making numerous, slow
RPC calls each time the input methods were used.

It turned out that the GF JavaScript library did not include the complete() function
required, and this ended up being implemented by the authors of this project. The
JavaScript implementation of this function has since made it into the GF code repository
and subsequent distributions of the framework (for source code refer to appendix D.2.2).

Grammar conversion

Both the game evaluator (written in Haskell, see § 7.3.2) and the CNL grammar (written
in GF) use the same formal contract logic, as defined in § 5.1. Since the GF syntax is
closely based on that of Haskell, the possibility of directly using the same logic code or
implementing some automatic conversion from Haskell to GF notation was investiga-
ted. However, despite the similarities in notation, it was concluded that attempting this
would be outside the scope of the project, especially for a relatively small grammar as
ours. Thus, the conversion from the contract logic in Haskell to GF abstract syntax was
carried out manually (the source code of both may be found in appendix D).

5This is done by compiling into PGF (portable grammar format), and then running this as a web service
using FastCGI. Details at http://www.grammaticalframework.org/doc/gf-tutorial.html#toc159

http://www.grammaticalframework.org/doc/gf-tutorial.html#toc159

CHAPTER 7. IMPLEMENTATION 48

Haskell API

The GF package comes distributed with a Haskell API, for accessing GF functionality
directly from a Haskell application. Since the contract logic in BanaNomic is also imple-
mented in Haskell (see § 7.3.2), using this API was a potential option. However in our
case the CNL generation and parsing only needed to happen on the client side—in par-
ticular to have access to the guided input systems—and thus our choice was ultimately
to use GF grammar compiled as JavaScript.

Multilingual features

The multilingual capabilities of GF were not in fact exploited in this project, since the
CNL for BanaNomic was only developed in English. However the use of GF would mean
that additional languages could very easily be added if the need were to arise in future
developments.

7.3 Server-side backend & game evaluator

7.3.1 Java backend

The server backend is the part of the system which ties all other modules together. By
taking care of all the application’s persistence needs (see below), this module stores and
manages all user and game data in the system. On the one hand, the backend handles
all RPC calls from client web browsers—which would typically include authentication
(logging in/out), retrieving current game data, submitting players’ turns, and recording
user feedback. On the other hand, the backend also invokes the game evaluator (see
§ 7.3.2) as needed by calling the executable through the command line.

Format conversions

In order to interface with the evaluator—which communicates gamestate information
encoded as XML—the backend also handles the conversions between POJOs, GF nota-
tion, and the specified XML scheme (for an example refer to appendix D.1.2). Speci-
fically, these operations are handled by two separate program modules, for converting
XML↔ GF and XML↔ POJO respectively. It should be pointed out that these conver-
sions are not necessarily total, and the POJOs created often contain class members which
contain the corresponding XML as a string. Similarly, GF representations are only ge-
nerated for certain classes, where necessary; it does not make sense to convert an entire
gamestate into GF notation as this is never required.

CHAPTER 7. IMPLEMENTATION 49

Persistence

The application’s storage needs were met using the EclipseLink6 Java Persistence API
library. This approach allows POJOs to be persisted directly to a database, without the
developer having to get into the conversion from the object-oriented (OO) model to the
relational one. The database server used was MySQL Community Server7.

7.3.2 Haskell game evaluator

The game evaluator is arguably the heart of BanaNomic, as it is the part of the system
which evaluates the game’s rules and determines the validity of player actions. The
evaluator is called in an ad hoc manner and has no persistence component or storage
of its own. For any given invocation, the evaluator is passed an entire gamestate (in
XML format; refer to appendix D.1.2) which contains one or more “scheduled” events,
which would typically be a player’s attempted turn. Each of the events in the schedule
is processed in sequence. When the event is accepted its effects on the gamestate are
affected (such as changes in player points), and the next scheduled item is processed
until the schedule is empty, at which point the updated gamestate is returned to the
caller (again, as XML). If any of the scheduled events happens to violate the gamestate
(e.g. attempting to carry out a forbidden action), then the entire transaction will fail and
the evaluator will return an error message to the caller.

Choice of Haskell

The game evaluator was written in Haskell8, defining the contract logic for the game as
an embedded language within the program. Haskell has been shown to be highly sui-
table for this purpose (Pace and Rosner, 2010), by conveniently allowing the embedded
language to be defined declaratively, like so:

Formal Logic Haskell Embedded Grammar

DeonticExp = O (PlayerName : Activity)

| P (PlayerName : Activity)

| F (PlayerName : Activity)

data DeonticExp =
DE_Obliged Player Activity

| DE_Permitted Player Activity
| DE_Forbidden Player Activity

This approach benefits the developer by “enabl[ing] the use of abstraction and mo-
dularization techniques from the host language in the embedded language” (Pace and
Rosner, 2010). While all classes and operators defined as part of the embedded lan-
guage can be treated purely at a domain-specific level, they also enjoy the benefits of

6EclipseLink 2.0.0. http://www.eclipse.org/eclipselink/
7MySQL Community Server 5.1.41. http://www.mysql.com/downloads/mysql/
8Haskell Platform 2009.2.0.2. http://hackage.haskell.org/platform/

http://www.eclipse.org/eclipselink/
http://www.mysql.com/downloads/mysql/
http://hackage.haskell.org/platform/

CHAPTER 7. IMPLEMENTATION 50

being implemented as Haskell objects. Thus, features like Haskell’s powerful pattern
matching and dynamic typing can be used directly with classes defined in the embed-
ded language. These features and the functional paradigm of Haskell make it an ideal
choice for the implementation of an embedded grammar along with the tools needed
for its execution and analysis.

XML interface

As mentioned previously, input and output from the game evaluator is encoded as
XML according to custom schema (see appendix D.1.2). For input, this XML is writ-
ten to a temporary file and the evaluator is passed the corresponding file path. The
resulting XML output is written straight to the program’s standard output stream. In-
ternal conversion between XML and native Haskell data structures was handled by the
hexpat-pickle9 Haskell library, which uses the Expat10 XML parser library.

7.4 Implementation notes

7.4.1 Hosting setup

For its evaluation period (see chapter 8), BanaNomic was hosted on the internet from
a personal machine running Windows XP SP3. The web server was run using Apache
Web Server11 with Tomcat12, as distributed together with MySQL Community Server13

in the XAMPP14 package. The game evaluator written in Haskell was compiled into
an executable file and called via the command line from the server backend. The GF
grammar was compiled into JavaScript and served to clients to be run locally. A custom
domain name was purchased, and the project hosted at http://bananomic.net.

7.4.2 Web applications & user interface

The major reason for deciding to develop BanaNomic as a web application was ease of
access and distribution. Being a multi-player game, the requirement for a central server
to administer player activity is unavoidable. The application could have been developed
as a desktop one which users would download and run locally, however the added
development effort for doing this would not have been justified. That being said, the
development of the web application and the user interface (UI) design did themselves
take up a considerable portion of the overall development time.

9hexpat-pickle 0.4. http://hackage.haskell.org/package/hexpat-pickle
10Expat 2.0.1. http://expat.sourceforge.net/
11Apache Web Server 2.2.14. http://httpd.apache.org/
12Apache Tomcat 6.0.20. http://tomcat.apache.org/
13MySQL Community Server 5.1.41. http://www.mysql.com/downloads/mysql/
14XAMPP 1.7.3. http://www.apachefriends.org/en/xampp-windows.html

http://bananomic.net
http://hackage.haskell.org/package/hexpat-pickle
http://expat.sourceforge.net/
http://httpd.apache.org/
http://tomcat.apache.org/
http://www.mysql.com/downloads/mysql/
http://www.apachefriends.org/en/xampp-windows.html

CHAPTER 7. IMPLEMENTATION 51

As the game was to be playable by a diverse audience, user interface issues could not
be ignored. The advantage of implementing a web-based solution is that users would
already be familiar with a number of UI concepts which are commonplace on the web.
These include tabbed layouts, tool-tips, check boxes, select boxes, auto-completion and
user logins. While maximum use was made of such concepts, other common website
functions were omitted for lack of time and irrelevance, such as user profile management
and inter-user communication.

7.5 Development issues & unforeseen problems

7.5.1 Logic

Time waits for no one

The implementation of time may be handled in a number of different ways. One option
could associate a time value for each action, indicating how long it takes to complete.
This approach is relatively realistic, however introduces of host of problematic situations
which would require correct handling. For example, what happens if an obligation
exists to perform an action every day, but the action itself takes longer than a day to
complete?

In our design, we opted for a simpler approach where performing actions does not
take any actual time; i.e. actions are considered completed the instant they are carried
out. As a result, actions can be performed together without needing to consider their
durations. In BanaNomic, the passage of time is governed by a global clock which is
synchronised to increment once every 24 hours, and there is no limit on the number of
actions that can be carried out in any given time frame.

Concurrent actions

As part of a normal turn, players in BanaNomic may perform multiple actions concur-
rently; for example, climbing up the tree and picking a banana in one go. Unfortunately
in the implementation of the game, no effective way of processing actions in a truly
concurrent fashion could be found. As a result, concurrent player actions are still inter-
nally processed in sequence. This specific sequence is defined by the program code, and
is made known to users as the order in which the turn options appear in the interface.

Conditional clauses

A conditional clause is one in which the resulting contract is dependent on the existence
of a given deontic expression. For example:

CHAPTER 7. IMPLEMENTATION 52

if player “Paul” is permitted to climb up the tree then
player “John” is obliged to climb down the tree

In such cases, the former deontic expression must be evaluated to determine if the
latter should be enforced. Unfortunately, the way that this evaluation is performed
in BanaNomic is somewhat limited, as in order to avoid arbitrary recursion all other
conditionals encountered in the evaluation are omitted. Thus, a clause such as the
following would not be evaluated as intended:

if player “Paul” is permitted to climb up the tree then
if player “George” is forbidden to pick a banana then

player “John” is obliged to climb down the tree

It may be argued that these types of phrases would not be that commonplace or even
desirable, since such recursive clauses generally do not sound right when expressed in
natural language. However it is a limitation of the system that—at least from a formal
point of view—they are not correctly processed internally.

Enforcement of obligation and prohibition

During the implementation stage, various difficulties were met when working on the
enforcement of player obligations. This proved to be a rather tricky task, in particular
when dealing with obligations with sometimes/always clauses (see § 5.3.4 for the inten-
ded behaviour). The initial solution turned out to be rather flawed; player obligations
could be viewed but not enforced, and some bugs in the code caused obligations which
were already satisfied to re-appear when they shouldn’t have.

These issues were initially unknown to the authors and were in fact present in the
application when it was first released for evaluation. However after their discovery
mid-way through the evaluation period, the necessary fixes were made and pushed to
the live version of the game. These fixes produced the correct behaviour in terms of
enforcement of obligations, except in the case of those within sometimes clauses. The
issue in this case was that as it is left up to the user when to fulfill said obligations, they
could in fact be left unsatisfied forever. For more information about this see § 8.4.1.

Finally, it should be noted that player obligations in the game are handled strictly by
enforcement, meaning that if an obligation needs to be satisfied then the player involved
will simply not be able to play without satisfying it. This also applies to prohibition,
making it impossible for users to perform actions which they are not allowed to do. This
method of enforcement excludes the possibility of more versatile violation handling,
where arbitrary repercussions could come into effect for not fulfilling one’s obligations
or carrying out prohibited actions.

CHAPTER 7. IMPLEMENTATION 53

Command-line string length limitation

As described in § 7.3.2, when the game evaluator is invoked it is passed an XML repre-
sentation of the current gamestate. In the initial version of BanaNomic, this XML data
was passed directly as a command-line argument through the standard input stream of
the process. However as the evaluation period went on and the games progressed, their
corresponding gamestate representations also grew until eventually the 8191-character
limit15 on the length of command-line strings was reached. The input XML data was
being truncated, which caused the evaluator process to wait endlessly for the rest of the
input and meant that the application would hang when players attempted to play their
turns.

Once this issue was noted and its source identified, changes to the code were quickly
made such that the XML data was instead written to a temporary file. Now, the game
evaluator process would only need to be passed the path to that file, rather than the
entire XML string. The changes were then pushed to the live version of BanaNomic
without interrupting the games in progress.

Haskell & the functional paradigm

In developing the game evaluator, the Haskell language was chosen for its suitability
for defining declarative grammars and working with them. However, the functional
programming paradigm is not without its trappings. For one thing, certain tasks which
are traditionally imperative require a total re-thinking when using a functional language,
in particular file I/O and program flow. Additionally, source code in Haskell tends to
be very cryptic to read and therefore much greater care must be taken to ensure that
it remains understandable when re-visited. Finally, while debugging tools for Haskell
do exist16, they are quite complicated to use and in reality are no comparison for the
powerful debugging tools available for modern OO languages.

7.5.2 Language

Parametric categories

As noted in § 5.3.5, the effective meaning of the so-called generic player varies with
the context in which it appears. To be able to handle this in the CNL implementation,
GF’s parametric categories were used. Consider the following extract from the abstract
grammar:

cat

15As described in Microsoft Knowledge Base article 830473, at http://support.microsoft.com/kb/
830473

16In this project the Glasgow Haskell Compiler (GHC)’s interactive debugger was used (version 6.10.4).
More information at http://www.haskell.org/ghc/

http://support.microsoft.com/kb/830473
http://support.microsoft.com/kb/830473
http://www.haskell.org/ghc/

CHAPTER 7. IMPLEMENTATION 54

Player ;

fun
P_Generic : Player ;
P_Player : String -> Player ;

This simply declares the Player category and two constructor functions for generic and
specific players. Then, as shown in the following excerpt from the concrete grammar,
we declare that the linearisation of a Player varies according to the PlayerParam passed
to it:

param
PlayerParam = PP_Any | PP_Every ;

lincat
Player = { s : PlayerParam => Str } ;

lin
P_Generic = { s = table {

PP_Any => "any player" ;
PP_Every => "every player"

} } ;

P_Player name = { s = table {
_ => "player" ++ name.s

} } ;

Note how in the case of the specific player P_Player the linearisation is always the same,
regardless of the PlayerParam used.

Null productions

As can be seen in § 5.1 the Time, Contract and Activity categories all have a null-
production ε, which symbolises the empty instance of that category. In both the logic
and language grammars these are represented by the constructors T_None, C_Empty and
A_Empty respectively. These null cases are useful during logical analysis, however in
the language case they present a bit of a problem. Specifically, trying to linearise them
as the empty string “” will cause parsing problems because in certain cases the parser
would not be able to determine whether an empty string in the input should be parsed
as a null production or the end of a sentence17.

To avoid this, the null productions for the Contract and Activity categories were both
linearised to the string “(nothing)”. In the case of T_None, this was not necessary as Time
items can never appear at the end of a phrase.

17The lack of punctuation in the CNL grammar also contributes to this problem.

CHAPTER 7. IMPLEMENTATION 55

7.5.3 User interface

Browser issues

The BanaNomic application was developed using Google Web Toolkit which allows the
building of AJAX-rich web applications while writing code purely in Java. During deve-
lopment, the site was tested under the Firefox18 and Chrome19 browsers on Windows 7.
While GWT may aim to provide compatibility across all modern browsers out of the
box, in the evaluation of the application a number of users experienced difficulties in
accessing and/or playing BanaNomic.

Initially some of these issues were found to be bugs in the code. However even
after these were fixed, some user’s problems still persisted. To confound the issue,
the problems were not simply browser incompatibilities, and the site would not work
correctly on certain machines irrespective of which browser was used. These issues are
suspected to be related to a user’s security settings, firewall, and anti-virus software.

However, achieving perfect cross-browser and cross-machine compatibility was not
a priority in this project, and since the root of these problems could not be determined,
some players were unfortunately forced to used different browsers and/or machines for
accessing the site.

7.6 Chapter summary

This chapter covers the implementation of the system built for this project, by first loo-
king at the overall architecture and then explaining in detail each of its major modules.
We discuss the technology choices made during the process, in particular the use of GF
for the language interface and Haskell for implementing the contract grammar as an
embedded language. We then conclude with a number of development issues which
arose, and how they were handled.

18Mozilla Firefox 3.6. http://www.mozilla-europe.org/en/firefox/
19Google Chrome 4.1. http://www.google.com/chrome

http://www.mozilla-europe.org/en/firefox/
http://www.google.com/chrome

Chapter 8

Evaluation
This chapter covers the evaluation of the BanaNomic system built. Based on the
project aims in chapter 1, we first consider what it is we want to evaluate, and
define the evaluation methodology to be used. We then describe the details of how the
evaluation was carried out, and present our summarised results. Finally we conclude
with an in-depth discussion of these results, the overall reaction to BanaNomic, and
some possible limitations in the methodology used.

8.1 Methodology

8.1.1 What answers are we seeking?

In accordance with the aims and objectives in 1.3, the evaluation stage of this FYP is in-
tended to investigate the effectiveness of the methods used in interacting with a contract
logic using a CNL representation. Specifically, measures of the effectiveness of the fol-
lowing aspects of the project are desired:

1. The expressivity of the grammar and its suitability for the given application.

2. The naturalness of the generated phrases.

3. The ease-of-use of the guided natural language input methods.

8.1.2 The questions we asked and how

One of the main reasons for implementing this project as a game was to be able to
provide an accessible platform through which test users could interact with the sys-
tem and provide feedback while being entertained. In order to obtain the answers we
were looking for, user responses were obtained through in-game feedback and a post-game
questionnaire.

56

CHAPTER 8. EVALUATION 57

In-game feedback

Firstly, a group of evaluators played the game for a stipulated time, filling in a short
feedback form with each turn they played. The questions asked were:

• How understandable are the rules of the game at this point?

• In this turn you added a new rule. How easy was it to express what you wanted
to?

• For this turn, how well could you understand what was going on?

For each question, players could give a quality rating from 0–4, as shown in table 8.1. A
comments box was also made available for any extra comments that players may have.
In addition to the feedback provided by the player, the enactment of rules and the input
method used were also recorded automatically. For a full list of the feedback received,
please refer to appendix C.2.

Rating Description

0 Poor
1 Weak
2 Average
3 Good
4 Great

Table 8.1: Available rating levels.

Post-game questionnaire

After the evaluation period was over, each player was sent a slightly longer questionnaire
about their experience with BanaNomic on the whole, with an emphasis on the natural
language aspect of the game. This consisted of a series of questions which asked for
ratings from 1–5, as well as a couple of multiple choice questions. The full questionnaire,
along with players’ responses, can be found in appendix C.3.

8.1.3 Evaluation period

Recruitment

A total of 14 individuals were recruited to help evaluate the game (all were personal
acquaintances of the author). Since the scope of the project was to create a natural
language interface which is usable by the non-technical, care was taken not to choose
too many evaluators from an IT background. In fact, only one of the 14 recruited was
actually qualified in IT. It is, however, pertinent to note that all the evaluators have had
some level of University education, with two even studying for postgraduate degrees.

CHAPTER 8. EVALUATION 58

Prior to evaluation each user filled in a short consent form, which obliged them to list
their field of expertise and level of education. Users were given the option of remaining
anonymous; accordingly some of the user names as listed in table C.1 are aliases, named
after random celebrities.

Setup and duration of games

The 14 evaluators were split between two concurrent games of BanaNomic, playfully
named Banana Bonanza and Potassium Paradise. Each game was run for nine consecutive
days, where each player was able to play up to one turn per day (or pass if unable to
play). At the end of each turn, players would be presented with a short feedback form
to fill in (see appendix C.2). Not all players were able to play every day due to personal
reasons, and the total number of feedback entries obtained was 79.

8.2 In-game feedback

8.2.1 Average overall ratings

The graphs in figure 8.1 show the overall ratings given by users during the game for the
following criteria:

1. Quality of generated text

2. Ease of expressibility using the CNL input method

3. Overall comprehensibility of the game

The first row of graphs show the totals of all feedback items together. However since
some players would have submitted more feedback items than others, it is possible that
these totals may be somewhat skewed. Thus the second row of graphs in figure 8.1
show the totals for the average ratings per player.

8.2.2 User ratings over time

To investigate how users’ ratings varied as the game progressed, the average rating
value for each criterion was found for each day, and plotted in figure 8.2. These were
not normalized per player. As the graphs show, there was no noticeable improvement
or worsening of the ratings over time.

8.2.3 Enactment of new rules

As shown in figure 8.3, two thirds of all turns played during the evaluation period
involved the enactment of a new rule. In all those turns, the suggest panel input method

CHAPTER 8. EVALUATION 59

0

5

10

15

20

25

30

Poo
r

W
ea

k

Ave
ra

ge

Goo
d

Gre
at

Generated Text

F
re

qu
en

cy
 (

T
ot

al
)

0

5

10

15

20

25

30

Poo
r

W
ea

k

Ave
ra

ge

Goo
d

Gre
at

Text Input

0

5

10

15

20

25

30

Poo
r

W
ea

k

Ave
ra

ge

Goo
d

Gre
at

Gameplay

0

1

2

3

4

5

Poo
r

W
ea

k

Ave
ra

ge

Goo
d

Gre
at

Generated Text

F
re

qu
en

cy
 (

N
or

m
al

iz
ed

)

0

2

4

6

8

10

Poo
r

W
ea

k

Ave
ra

ge

Goo
d

Gre
at

Text Input

0

1

2

3

4

5

Poo
r

W
ea

k

Ave
ra

ge

Goo
d

Gre
at

Gameplay

Figure 8.1: Overall in-game feedback ratings — Total (top row) and normalized per player
(bottom row).

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4
Generated Text

A
ve

ra
ge

 R
at

in
g

Day
1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3

3.5

4
Text Input

Day
1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3

3.5

4
Gameplay

Day

Figure 8.2: Average user ratings per day.

CHAPTER 8. EVALUATION 60

was the most commonly used text input method. However, it should be noted that this
was the default input method shown to users when playing a turn, and using the fridge
magnets method would require deliberately choosing it. A more thorough approach
would have been to randomly choose the input method displayed to the user, and then
track whether users bothered to change to their preferred input method or simply used
whichever method was displayed first to them.

See also the first chart in figure 8.6, which shows the popularity of each input method
based on what users named as their preferred choice in the post-game questionnaire
(regardless of what they actually used during the game).

33%

67%

Enactment of Rules

24%

76%

Use of Input Methods

Didn’t enact rule
Enacted a rule

Fridge Magnets
Suggest Panel

Figure 8.3: Enactment of new rules (as a percentage of total turns played) and input methods
used.

8.2.4 Complete turns and passes

Given the self-altering nature of BanaNomic, one of the potential outcomes of a game is
that users are rendered unable to play because of conflicting rules. Specifically for such
situations, users were also given an option to pass their turn. As shown in figure 8.4,
the number of players having to resort to passing was actually quite low at just 5 per
cent.

8.3 Post-game questionnaire

Figures 8.5 and 8.6 show summaries of the data collected in the post-game questionnaire
sent out to players. In all charts in figure 8.5 a higher x-value is desirable, except for
the Rule-Action Balance, where a median value is ideal (implying the game was well
balanced).

CHAPTER 8. EVALUATION 61

5%

95%

Player Turns

Passes
Completed Turns

Figure 8.4: Complete turns and passes played.

Difficult Easy
0

2

4

6
Game Concept

Confusing Interesting
0

2

4

6
Reaction to Rules

Complicated Mundane
0

2

4

6
Rule−Action Balance

Ambiguous Understandable
0

2

4

6

8
Generated Text

Difficult Easy
0

2

4

6

8
Composing Rules

Big Problem No Problem
0

2

4

6

8
Language Barrier

Figure 8.5: Summary of post-game questionnaire responses (see also figure 8.6).

CHAPTER 8. EVALUATION 62

21%

14%

64%

Preferred Input Method

Fridge Magnets
No Preference
Suggest Panel

21%

79%

Option of free−text Input

Free−text input preferred
Not preferred

Figure 8.6: Post-game questionnaire responses about input methods.

8.4 Discussion

8.4.1 The contract logic and the self-amending game

As became apparent during the development of the project, trying to get feedback from
users about the design of the contract logic is not an easy task. Since the scope of the
project was to build a system which is accessible to non-technical people through the
use of natural language, evaluators could not be asked directly about their views on
the design of the contract logic. As a result, the feedback obtained was more about the
game on the whole; however by analysing the players’ comments we may identify areas
in which the contract logic could be improved. The following observations were made.

Limited rule possibilities

Some users commented that once they were familiar with the idea of the game, the rule
possibilities quickly started to seem limited. While this did not prevent them from ma-
nipulating the rules to their advantage, it is pertinent to note that these restrictions were
quickly noticed. Thus were the contract grammar to be used for any sort of long-term
project, it would need to be enriched in order to make it more expressive. Interestingly,
certain language features were not used at all throughout the entire evaluation period,
in particular the so-called deontic-conditional clause:

If Maureen is permitted to pick a banana, then . . .

CHAPTER 8. EVALUATION 63

Variety of actions

None of the user comments directly implied that there were not enough simple actions
available. However since the actions available have a significant role in the general
expressivity of the grammar, having a wider choice of actions would help contribute
towards a more versatile and expressive grammar, as mentioned above.

Ease of rule manipulation

Another notable comment which users made was that the ability to instantly enact and
abolish rules somewhat undermined the whole idea of having rules in the first place. As
noted in the players’ turn patterns, rules were regularly enacted to be used by the player
themselves within that very turn. Similarly, players who were forbidden from carrying
out a certain action would often simply abolish the rule prohibiting them to do so, and
carry out that action within the very same turn

The initial intention was for rule enactment and abolition to happen democratically
through a voting system, in true Nomic style. However this feature was eventually
dropped in favour of a simpler direct system (see § 5.3.6), and to a certain degree these
repercussions were anticipated.

In addition, the manipulation of rules is considered as a simple action, such that
there is no way in which users can be prohibited from enacting a certain type of rule.
For example, it is impossible in the grammar to express the following rule:

Ringo is prohibited from enacting a rule which forbids George to climb up the tree.

Instead, only a generic rule such as the following may be enforced:

Ringo is prohibited from enacting a rule.

Priority of prohibition

One user mentioned that the game had an overall sense of negativity to it, in that the
best way of succeeding was ultimately to prohibit other users from performing whatever
actions. This is a direct result of the precedence of prohibition over permission and
obligation, which ultimately comes down to a design choice (see chapter 5).

Fallibility of obligation

In the first few days of the evaluation period, a number of bugs existed with the im-
plementation of obligations and their satisfaction. This essentially meant that user’s
obligations were not enforced, and could in fact be completely ignored. Finally these
issues were resolved and players were unable to complete their turns without fulfilling
their pending obligations. However the implementation of obligations within sometimes

CHAPTER 8. EVALUATION 64

clauses remained problematic; while the choice of when to fulfil the obligation was left
up to the individual users (external/angelic choice), there was ultimately no final check
to see if it had in fact been satisfied. In other words, sometimes obligations could remain
pending forever, and thus never fulfilled.

8.4.2 Language aspect

While most of the feedback collected during the evaluation stage pertained to the natural
language aspect of the game, it would seem that this was the area with which users had
the least problems. Data from the in-game feedback and the post-game questionnaire
show that both the generated text and CNL input methods were quite well-received,
and did not act as a hindrance to understanding and participating in BanaNomic.

CNL input methods

Of the two input methods provided—the suggest panel and fridge magnets—the former
proved to be the most popular with users as shown in figures 8.3 and 8.6. While they
both provided access to exactly the same linguistic constructs, users found the suggest
panel method “quicker” to use and “more streamlined” (taken from user comments; see
table C.3). In addition, it is suspected that the mouse-only approach of the fridge ma-
gnets method proved to be a slight deterrent, in that all computer users are conditioned
to enter natural language phrases through typing. However this explanation is mostly
speculative.

Free-text input

As a point of interest, users were asked in the post-game questionnaire whether they
would prefer a free-text input method rather than the ones provided. Interestingly,
only three of the 14 respondents (21 per cent) answered that a free-text input would be
preferable (see figure 8.6). Though one cannot generalise from just three responses, the
feeling seemed to be that while the guided input was helpful at first, once the general
structure of the language was learnt a free-text input would have been quicker and
more natural. However the remaining majority said that they would not prefer such an
unrestricted form of input, saying that:

“the possibilities would have been endless and the rules more difficult to
follow”

and

“[when using the suggest panel] there was no need to worry about how to
word the rules”

(Quotes taken from user comments; see table C.3).

CHAPTER 8. EVALUATION 65

8.4.3 Overall reflections on the game

Information overload

While on the whole the game showed some success within just 9 days, initially there
was quite a lot of confusion over how things worked, in particular the rule amendment
system. Users asked many questions to the author through informal channels about the
how’s and why’s of BanaNomic, and although a full user guide was provided there was
a general sense of information overload. Users expressed this repeatedly through their
comments (see table C.3), saying:

“I’m still not quite sure what I’m supposed to be doing!”
“There is a huge amount of information and rules that needs to be taken
into account . . . which tends to make strategies for rule creation and use a bit
obscure.”
“Overall, the game was quite hard to understand at first—mainly because I
wasn’t sure what I was allowed/not allowed to do”

One point to note is that even with the limited contract grammar used in BanaNomic,
there was still a considerable amount of uncertainty and confusion. As such, the de-
cisions to strip out the more complex aspects of the grammar was justified by users’
difficulty in understanding the game.

Unhelpful error messages

A factor which also contributed to users’ confusion was the generality of the error mes-
sages provided by the system. When playing their turn, players would often be told
that their turn could not be accepted because of rule constraints. However the way the
system was implemented meant that users could rarely be told exactly why their turn
was not accepted; simply that it was not valid. This resulted in players having to make
many attempts at their turn before successfully playing, and frequently playing whate-
ver would be accepted—as expressed directly in comments such as the following (see
table C.3).

“For some reason I couldn’t enact a new rule”
“I had some obligations to fill and my turn wasn’t accepted until I did them,
the problem was that the error message did not tell me why my turn was
not accepted, the error message was too generic.”
“I tried to enact the rule . . . but it didn’t let me, although I can’t quite figure
out why”
“. . . after several attempts I managed it though not what I really wanted to
do”

CHAPTER 8. EVALUATION 66

“There are too many rules and counter rules. I ended up playing what it let
me not what I wanted.”

Too many rules

As the games in the evaluation period progressed, eventually so many rules existed
that keeping track of them was close to impossible—at least for a human. Of course
the whole point of BanaNomic was to create a system where the rules are automati-
cally checked for the users, but given the unhelpful error messages as mentioned above
this proliferation of rules also contributed to somewhat of an information overload for
users. This problem was undoubtedly a result of the ease with which rules could in fact
be created. A democratic rule amendment system—as initially intended—would have
greatly diminished this problem of rule proliferation. However this was not technically
achievable within the time available, and the relatively short evaluation period of nine
days would likely not have been enough time to properly evaluate such a system.

Turn processing and player tactics

One of the implementational limitations of the project is that when a user’s turn consists
of multiple actions, these actions are actually processed in sequence rather than as a
concurrent set of actions (see § 7.5.1). This order was pre-determined and in fact
made known to users, who subsequently used it directly in their gameplay tactics. For
example, the abolition of rules was processed before any other basic action, such as
climbing up the tree. Thus, if a rule existed stating

Paul is prohibited to climb up the tree.

then Paul would still be able to climb up the tree, as long as he abolished this rule within
the same turn. Unfortunately, once this tactic was discovered by a player it meant that
the circumvention of prohibitive rules was easier than it should have been. Some users
even directly commented about this in their feedback, saying

“[it was] easy to get around existing rules by abolishing an old one”

(Quote taken from user comments; see table C.3).

8.4.4 Limitations with the methodology

Embedded generated text

One of the primary purposes of the BanaNomic evaluation period was for users to
provide qualitative feedback on the naturalness of the generated text elements of the
game—i.e. the wording of the rules. Within the game, all instances of generated text—
rules and obligations—always appeared in yellow boxes to distinguish them from other

CHAPTER 8. EVALUATION 67

parts of the site whose wording was not automatically generated. While the both the
in-game and post-game feedback forms specifically asked the users to evaluate the lin-
guistic qualities of the game’s rules, one cannot guarantee that they did not provide
ratings based on the language of the entire BanaNomic site—including, for example, the
user guide.

Limited evaluator group

With the limited time available for this project, the game evaluation could only be car-
ried out by a single group of 14 individuals. These evaluators came from different
professional backgrounds, yet all had some form of University education. For a more
complete evaluation of any project, a larger sample size with a more varied spread of
education levels would be needed in order to have more statistically significant results.

Evaluator bias and incentive

As with any statistical study, the possibility of bias is always present. In the case of
this project, one notable source of potential evaluator bias is that all users involved
in the evaluation were personal acquaintances of the author, either as relatives or as
colleagues. Another important point which may have also skewed the results obtained
is the relatively high education level of all the evaluators.

Finally, it should also be pointed out that the users evaluating this project had no
particular incentive for doing so. The idea of developing a game did definitely help to
keep users interested, however at the end of the day there was no real benefit for users.
Thus there is always the possibility the feedback received was not totally genuine, and
simply filled in ‘to get it over and done with’.

8.5 Chapter summary

In this chapter we described the goals, method, and results of evaluation for this project.
The qualitative results received during the evaluation period were provided through in-
game feedback and a post-game questionnaire, and are summarised in the various charts
provided along with explanations of interesting findings. We conclude the chapter with
an in-depth discussion of these results and the comments from users about various
aspects of the game. Possible limitations in the evaluation methodology used are also
highlighted.

Chapter 9

Conclusions
In this final chapter, we look back at the progression of the project from inception to
evaluation. The original project aims are re-visited and the degree to which they were
met discussed. A number of shortcomings with the implementation are mentioned,
and finally ideas and scope for future work are put forward.

9.1 Reflections on the project

9.1.1 Project overview

Motivation and aims

This project was borne out of the current interest in electronic contracts and the possibi-
lity of combining them with CNL techniques for real-world systems. The primary aim
was to investigate the use of CNLs for contract logics and come up with some measure
of the effectiveness of the approach. As a case study, the game of Nomic was chosen
for its contract-like rule system and its interesting self-amendment features. These ideas
were to be developed into a working version of the game where users could play against
each other. Evaluation of the system would consist of qualitative feedback provided by
players on the language interface and the underlying contract logic (chapter 1).

Design

Our own version of Nomic called BanaNomic was defined, set in a rainforest where each
player is a monkey in a tree, competing to pick bananas and able to manipulate the rules
of the forest to their advantage (chapter 4). A suitable contract logic was designed for
the game (chapter 5), based on the OPP-logic as defined in Pace and Schneider (2009).
The possible types of expressions in this logic were then given linearisations in English,
which constituted a CNL interface for the logic (chapter 6).

68

CHAPTER 9. CONCLUSIONS 69

Implementation

The system built for this project was implemented as a web application, using Google
Web Toolkit (GWT) for building the user interface and handling AJAX requests on the
server. Haskell was used for the game evaluator (which handles all the contract logic
evaluation), while the CNL interface for the application was built using GF (Ranta,
2004). Some deviations from the original designs had to be made because of unforeseen
difficulties in implementation. A number of system shortcomings were also identified
at this stage (chapter 7).

Evaluation

Two games of BanaNomic were played by 14 players over nine days, where qualitative
assessments were obtained through in-game user feedback and a post-game question-
naire. Once collected, these results were analysed and a number of observations on the
success of the approach were determined (chapter 8).

9.1.2 Summary of results

From the results analysis in chapter 8, the following observations were made about the
various aspects of the project.

The choice of a Nomic-like game as a case study for CNLs and contract logics proved
a good choice and was well suited to the area of electronic contracts, yet still entertaining
and interesting to users. While developing a Nomic variant was not one of the primary
aims of this FYP, the use of a game for evaluation purposes was definitely beneficial;
the excitement and competitiveness involved in playing a game helped to prevent users
thinking of evaluating the system as a boring duty. BanaNomic’s self-amending nature
was met with interest by the evaluators, although many did express initial difficulties
with understanding the gameplay.

The contract logic designed for BanaNomic worked well on the whole and provided
for a playable, well-balanced game. However its limited expressivity was also quickly
noted by users, so attempting to apply the logic for a more complete version of Nomic
would require considerably more work. The implementation of the game evaluator
(§ 7.3.2) was also not without its share of limitations, and the code itself was not written
with extensibility in mind such that adding new features to the evaluator would not be
a trivial task.

The CNL interface used in BanaNomic seemed to be the area with which users expe-
rienced the least problems. None of the users involved expressed any notable difficulties
with understanding the generated phrases, and all seemed to find the guided input me-
thods both helpful and easy to use. The use of GF worked as desired, and proved to

CHAPTER 9. CONCLUSIONS 70

be an excellent way for building a natural language interface to a formally defined logic
grammar.

Fulfilment of aims

All in all, the project goals as set out in § 1.3 were successfully completed. A workable
system which incorporated all the desired features was built, and successfully tested by
a group of external evaluators who assessed the quality of the CNL used and its effect
on the use of the application. In the process of designing, building and evaluating the
system, a number of limitations with the project methodology were established; these
are discussed in the following section.

9.2 Points of limitation

9.2.1 Natural language

Multiple linearisations

Firstly, the CNL used has no real concept of multiple linearisations for any given state-
ment. While in natural languages the same thing may be said in a variety of ways, there
is no such flexibility here. It would be possible to handle these by having additional
“style” parameters in GF, however there is no automatic solution and every variation in
style needs to be explicitly defined in the grammar. One might argue that this is the
price that is paid for opting for a CNL approach.

CNL simplicity

While probably the most successful aspect of this project, in reality the design of the
CNL in GF probably took the least effort of all system modules, in terms of implemen-
tation. While this may be a testament to the suitability of GF for the task, the restricted
contract logic designed for the project meant that there was not that much scope to
explore the deeper aspects of controlled languages.

Ultimately, the CNL interface used came quite close to a fully template-like ap-
proach, but as shown in the evaluation results it proved to be adequate for its purpose.
The weaknesses of this approach tend to become apparent when long, nested clauses
are used:

If every player has less than 5 bananas then at some point if any player has more
than 2 bananas then every player is permitted to climb up the tree otherwise every
player is forbidden to climb down the tree otherwise every player is permitted to pick
one banana.

CHAPTER 9. CONCLUSIONS 71

While well-formed according to the CNL grammar, sentences such as these are com-
pletely impossible for human readers to follow. Cases such as these require proper
handling if the CNL is to retain its ‘naturalness’, however it must be said that—at least
within the evaluation period—users never created rules of this depth. Whether this is
in spite of the CNL limitations or because of them cannot really be determined.

Use of English

In relation to the previous point, it should also be noted that the CNL interface designed
for this project was in English only. As with other CNLs that are designed for only a
single natural language (Fuchs et al., 2008; Pulman, 1996), regardless of our own expe-
rience we simply cannot comment on the ease or difficulty involved in extending our
CNL to other languages. The huge variations that exist between language families (e.g.
Germanic, Romance, Slavic, Semitic etc.) mean that the design and implementation of
any CNL interface are largely dictated by the ‘base’ natural language used. That being
said, Ranta and Angelov (2009) did successfully manage to port ACE (Fuchs et al., 2008)
to French, German and Swedish by using the GF Resource Grammar Library.

9.2.2 Contract logic

Restrictions on OPP-logic

The contract logic used in this project is based on the OPP-logic from (Pace and Schnei-
der, 2009), however a number of features were cut back or even removed for the benefit
of simplicity:

i. Negation, repetition and sequencing of Contracts, as well as negation and timely
clauses (sometimes/always) for Activities were omitted (see § 5.1).

ii. CTD, CTP and unless contracts were not implemented and there is no concept of ‘re-
percussions’ for unsatisfied obligations; instead all obligations are simply enforced.
This is a big simplification over real-life contracts.

iii. The “if contract exists” conditional clause had to be left out as it proved overly
complex to implement.

Concurrent actions

As explained in § 7.5.1 the handling of concurrent events could not be implemented as
originally intended, which had major implications on the way the game was played (see
also § 8.4.3).

CHAPTER 9. CONCLUSIONS 72

Consistency checking

The game evaluator, as implemented, cannot really check for inconsistencies within a
given contract; rather, it can only recognise contract-violating events as they happen.
This was adequate enough for the requirements of BanaNomic, however it is a long way
from being given a complete contract and determining whether it is self-contradictory.

Choice

Because of the limitations in the contract logic as described above, there was no opportu-
nity to properly tackle the issues of internal and external choice. Instead, in BanaNomic
all choice is always treated as external (angelic), i.e. decisions are made by the user
performing the action in question.

9.2.3 Nomic

General limitations

Usually in games of Nomic players are free to think up any type of rule imaginable,
however no such luxury could be afforded in our restricted version of the game. Since
BanaNomic is a computerised game, all actions and rules must have a formal represen-
tation, and thus must be hardcoded in some way into the system. This of course results
in a much more limited game than a purely linguistic version of Nomic.

Lack of voting system

A major departure in our project from the traditional Nomic is that rules can be enacted
and abolished immediately, without going through a system of voting. This design
choice was intentional, for it was feared that having a democratic voting system would
introduce a whole lot of bureaucracy and result in not many rule amendments actually
seeing the light of day (see § 5.3.6). This simplification did have the desired affect,
although a related problem is that the ability to instantly abolish rules makes them
somewhat futile in the first place (see § 8.4.1). This was quickly noted by the evaluators,
however in general did not seem to detract from the enjoyability of the game.

9.2.4 Evaluation

Every method of evaluation has its boundaries and limitations. As discussed in § 8.4.4,
the potential issues with evaluation in this project include:

• A possible over-generalisation by users, rating the quality of the natural language
across the entire site rather than just the generated text phrases.

CHAPTER 9. CONCLUSIONS 73

• The limited size and variety of the evaluator group.

• A potential evaluator bias because of personal relationships with the authors.

• The possibility that the feedback submitted was not thought out much, and simply
completed because it was mandatory.

9.2.5 Other observations

Self-amendment of the game

In the evaluation period some users did comment that the rule possibilities quickly
began to seem restricted, and they were not necessarily able to create the rules that they
would have liked to. This perception is definitely warranted, and is a direct result of
restriction made on the contract logic itself.

However the game in general is limited in a much greater yet subtler way; indeed,
the very code on which the system runs is the ultimate limiting factor in BanaNomic.
While this did not seem to be an issue for users, almost everything about how the game
works is hard-coded, meaning that most things could never be changed throughout the
duration of a game. These could include:

i. what happens when a banana is thrown,

ii. who is eligible to play their turn and when,

iii. the process through which rules are updated, and

iv. how victory is defined.

The true essence of Nomic really is this concept of total self-amendment, but clearly
in our electronic version of the game this ideal could nowhere near be reached. When
your game is purely language-based this is never a consideration, but to become ame-
nable to computation it becomes a major issue. Ultimately, the area of self-amending
programs is a vast and complex one, but achieving a high degree of self-amendment
was not the primary goal of this project.

User trust & understanding

Throughout the evaluation period, a considerable amount of time had to be devoted
to answering user questions about how the game rules are processed, notwithstanding
the full user guide that was provided to them (see appendix A). In addition, the error
messages generated by the system were not as detailed as they could have been (see
§ 8.4.3), which also contributed to users’ uncertainties about the system.

CHAPTER 9. CONCLUSIONS 74

From the questions being asked, it became clear that fully understanding the way
the system worked was of utmost importance to the users, and directly affected the way
they played and the rules they enacted. This is entirely reasonable, and one can imagine
that in a real-world situation the correct understanding and trusting of an electronic
contract system would be ever the more important. Thus an unexpected lesson learnt
from this project is that simply building such a system is only one step towards gaining
true acceptance for its actual use.

9.3 Future work

9.3.1 Unrealised ideas

The first candidates for future work would of course be the implementational limita-
tions as listed in § 9.2. These include making both the logic and language grammars
more expressive, correctly handling concurrent events, exploring the areas of internal
and external choice, and implementing obligation management using a ‘repercussions’
system.

Beyond these basic improvements, one major step forward from this work would
be the use of a full contract consistency checker, such as the CLAN tool (Fenech et al.,
2009b). Such a tool would allow not only the validation of events as they happen,
but also be able to detect anomalous or contradictory contract clauses. In terms of the
Nomic game, this would allow for more interesting possibilities and victory conditions.
For example, points could be awarded for giving other players conflicting obligations,
or placing them in some other unsatisfiable situation.

One final aspect of the project which also lends itself to further research is the self-
amending nature of Nomic. In BanaNomic, the degree to which the game can change
itself only goes as far as the players’ permissions and obligations. However there is
potentially no limit to what aspects of the game are open to self-amendment (see § 9.2.5),
and there is quite some scope for investigating the area of self-amending computer
programs and how they could be used to simulate the game of Nomic.

9.3.2 Ultimate goals

On a broader scale, the eventual intention for a project such as this is to reach a point
where electronic contracts combined with natural language technologies can be used
together in real-world applications where computers have not yet penetrated. Some
ideas for such applications are listed below.

CHAPTER 9. CONCLUSIONS 75

Personal contract manager

In our everyday lives we are surrounded by contracts, from mobile phone subscriptions
to house mortgages and everything between. Each such contract generally binds us
to carry out certain actions (usually paying!) within specific time constraints, which
people usually remember through calender reminders or by receiving a bill each month.
But with an established standard for electronic contracts, computer applications could
easily be built to manage all of one’s contracts together in one place; for example within
a calendar application. Such a program could notify the user of upcoming payment
deadlines, advise on what would happen if payments are delayed or missed, and even
ensure that the service given by the provider is itself as specified in the contract. This
sort of capability would empower consumers to ensure their providers are living up to
their end of the contract without the need to bring in professional lawyers.

Contract authoring & optimisation

So far we have mostly talked about the checking of events against an existing contract,
with mention of some tools which can check for conflicts within a contract. But why not
take this further, to optimising contracts to be as short as possible, or to be favourable to
one party over another (ignoring ethical considerations!). Better yet, one can imagine a
contract authoring system which, given a declarative set of requirements, could compose
a complete contract for the author.

Government simulator

The study of electronic contracts usually names service-oriented architectures (SOAs) as
its primary focus, such as ISP service-level agreements (SLAs). However the concept of
a contract can even be extended to government legislation, which ultimately deals with
the same notions of obligations, permissions and prohibitions (along with the related
concepts of duties and rights). From this, one can easily imagine a system for simula-
ting governmental systems which could indicate public law violations of constitutional
rights, or automatically assess how new international treaties would affect the policies
of an individual state. The possibilities are vast, but whether there would be a demand
for such systems or not is a different story.

9.4 Closing remarks

On the whole this project was successful in meeting all its initial aims. The system
built included all the desired components, and was evaluated as planned by a group
of external users who provided qualitative feedback on the contract logic and natural
language used. The feedback received indicated an overall positive reception from the

CHAPTER 9. CONCLUSIONS 76

users, while still revealing the weaker areas of the implementation and providing scope
for future work and improvements.

This project has demonstrated that the use of CNLs in conjunction with electronic
contracts can produce a usable system with highly acceptable results. However in es-
tablishing the viability of the approach used, this project also uncovered some other
interesting issues along the way.

The sheer amount of questions asked by players about the way the system processed
their turns indicated that even with full information provided in writing, users were
still in general unsure about how it would behave and apprehensive to accept and trust
it. The unhelpful error messages produced by the system likely contributed to this, and
the requirement of a user to know why their turn was not accepted turned out to be
quite a basic need—yet it was not fully addressed by the system. While this project only
involved the playing of a game, in a real-world electronic contract system such problems
of trust would be far more serious.

Some of the main motivations for working with contracts electronically is to relieve
people of the complicated task of figuring out contractual clauses and their implica-
tions, to reduce the general uncertainties that contracts often generate, and to bring a
level of certainty and transparency to the evaluation of contracts. However it would be
no understatement to say that in our case, the system built seemed to generate equally
as much ambiguity and uncertainty over its behaviour as it solved. While the imple-
mentational issues encountered during this project could readily be solved with enough
time, the human issue of gaining the user’s trust in an automated system is not so easily
addressable.

Appendix A

User guide
This is a copy of the user guide as provided on the BanaNomic site for the evaluators.
It is included here in order to provide a full reference on how the game works and
how it is played.

A.1 The basics

A.1.1 What’s this game all about?

BanaNomic is my take on the game of Nomic, a game where the rules of the game change
with every turn. Usually games of Nomic are played with pen and paper or via email,
but BanaNomic is completely computerised—which means that the program can actually
understand the rules directly. The purpose of BanaNomic is to test these distinct features:

1. The management and self-amendment of formally defined game rules.

2. The automatic generation of English phrases.

3. Different methods for composing rules in simple English.

A.1.2 The setting

BanaNomic is a multiplayer game, where all players live together in a tree in the rainforest
and compete against each other to collect the most bananas possible. While bananas can
easily be picked from the tree, all players also must abide by a set a rules which govern
rainforest life. These rules dictate what players are allowed, prohibited, and obliged to
do. These rules cannot be broken; However, being a democratic rainforest, these rules
can be changed by tree citizens. Thus, it is up to every player to bend the rules in their
favour! (ok, so it’s not very democratic).

During the evaluation phase two separate games—Banana Bonanza and Potassium
Paradise—will be running concurrently, and every player will be assigned to one of the

77

APPENDIX A. USER GUIDE 78

two games. Each player may play up to one turn per day, and both games will run for
7 days (or until a stalemate is reached).

A.1.3 Playing your turn

To view a game in progress, click on the Games tab to show a box similar to the one in
figure A.1.

Figure A.1: Panel for playing one’s turn.

The tree image on the left shows where each player is in the tree. The number in
brackets next to each person’s name shows how many bananas they currently have.
Note the number of bananas left which can be picked.

The first tab at the bottom-right shows the Current Rules that are active in the game.
These will change every time a player takes their turn, so always keep an eye on them.
The Events tab will show a history of all the turns played so far, so you may go back in
time and see how other players have played.

The Play Turn section at the top-left is where you play your turn for the day. Each
turn may consist of one or more of the following:

• Enact a rule—compose a new rule which will become effective after your turn.
This is the most important feature of the game, and your most powerful (and
devious) tool for achieving victory!

• Abolish an existing rule—if a rule is working against you, you can abolish it alto-
gether... as long as you are allowed to!

• Climb up or down the tree—See below for why you would want to do this.

APPENDIX A. USER GUIDE 79

• Pick banana—pick a banana from the tree. Players cannot pick bananas from the
Forest Floor, so you would need to climb up before doing so.

• Throw banana—throw a banana at another player who is on the same level as your
are. You will lose one banana, but the other player will lose all their bananas and
end up on the Forest Floor again (ouch!)

A.1.4 Composing rules

When composing a new rule, rather than just typing it out, you may use one of the
following 2 input methods. Whichever you use is totally up to you! Just give both
a try and see which you prefer. In both cases, a small icon on the right will indicate
whether the phrase you’ve constructed is valid () or not (). To make things more
straightforward, neither of the input methods handles punctuation.

Suggest Panel

The Suggest Panel (figure A.2) is a normal text box with a drop-down selection of mat-
ching phrases, which most users will already be familiar with.

Figure A.2: Suggest panel input method.

Fridge Magnets

The so-called Fridge Magnets method does not involve typing; Instead one simply clicks
the desired phrase at each point until an entire sentence is constructed.

Figure A.3: Fridge magnets input method.

A.1.5 Feedback

After every turn, you will be shown a small feedback dialog which you will need to fill
in in order to continue. As shown below, you will just be asked some basic questions

APPENDIX A. USER GUIDE 80

about your turn and how easy or difficult you found it to play. This is one of the
most important parts of the project for me, and I’d really appreciate it if you answered
truthfully each time! Don’t worry about giving negative feedback, as I will not be graded
on the success of the project, but rather on the method.

Figure A.4: The in-game feedback dialog shown to players after each turn.

A.1.6 The initial rules

Each game starts off with the following initial rule set, which is just intended to get you
going:

1. every player is permitted to climb up the tree

2. every player is permitted to climb down the tree

3. every player is permitted to pick one banana

4. every player is permitted to throw a banana at any player

5. at some point every player is obliged to enact a new rule

6. at all times from 3 b’clock every player is permitted to abolish an existing rule

7. if any player has more than 10 bananas then every player is forbidden to throw a
banana at any player

APPENDIX A. USER GUIDE 81

A.1.7 Some gameplay tips

• Tool-tips are included all over the site, so to get more information about something
just hover the mouse cursor over it.

• You are free to add all the rules you want. However, too many rules will tend to
conflict with each other and make the game unplayable! Instead, consider abolish
an existing rule.

A.2 Other issues

A.2.1 What’s b’clock?

Banana time of course! One b’clock is equivalent to one human day, so 3 b’clock would
mean three days since the commencement of the game.

A.2.2 How actions are processed

Although all the actions in a single turn are chosen together, internally they are in fact
processed in sequence. This sequence is precisely the same as the way the actions are
presented in the play panel, i.e.:

1. Enact rule

2. Abolish rule

3. Climb down / Climb up

4. Pick banana

5. Throw banana

This means that if in your turn you choose climb down and pick banana, then the banana
will be picked after you have climbed down.

A.2.3 How rules are processed

Every action in the game must satisfy at least one of the game’s active rules. For
example, given these two rules:

1. Player 1 is permitted to either climb up the tree or pick a banana

2. Player 1 is obliged to abolish a rule

Then if Player 1 picks a banana, it will be accepted because it satisfies the first rule. Note
that prohibition takes precedence over all other rules (see below).

APPENDIX A. USER GUIDE 82

A.2.4 Permission, obligation and prohibition

The game centres around these 3 basic concepts:

Permission A player is allowed to do something, but does not necessarily
need to do it.

Obligation A player must do something, and there may be repercussions
for failing to do so. Note that obligation implies permission.

Prohibition A player is forbidden from doing something, and there may be
repercussions for disobeying. Prohibition takes precedence over per-
mission and obligation.

Notes

• The absence of permission implies prohibition. So a player is only allowed to do
something if a rule exists which explicitly allows them to do so.

A.2.5 Sometimes & always

Rules can include the sometimes/always clauses to make them effective only at certain
times, or within a time range (e.g. between 1 b’clock and 5 b’clock). The sometimes
clause means that an obligation will only need to be satisfied once within the given
range, while an obligation within an always clause will mean it is effective at every
turn.

A.2.6 Fixed laws

While the rules of the game are mutable (can be changed by players), the Laws below
are fixed and dictate the basics of how the game is played:

1. The game will end after a fixed amount of time.

2. At the end of the game, the player with the highest number of bananas will be
declared the winner.

3. Players can only play once per day.

4. Bananas cannot be picked from the Forest Floor.

5. Bananas can only be thrown at players who are at the same level as the thrower.

6. One cannot climb up and down at the same time.

APPENDIX A. USER GUIDE 83

A.3 Technical issues

A.3.1 Browser compatibilities

BanaNomic has been fully tested under Mozilla FireFox and Google Chrome, however
it should work in all modern browsers. The site will look its best in FireFox, but that
mostly just refers to aesthetics (rounded corners and such). This site has not been tested
under mobile browsers (e.g. iPhone, BlackBerry) but you are welcome to try and let me
know.

A.3.2 Bugs and glitches

As hard as I’ve tried to make sure everything works smoothly, it is entirely possible
some bugs will crop up in the game. If you discover such a bug, be sure to let me know
while trying to continue playing as best you can.

Appendix B

Game transcripts
This section contains the full transcripts from the two BanaNomic games played du-
ring the project’s evaluation period—Banana Bonanza and Potassium Paradise.
Included are the initial rule set (common to both games), details of all turns played
and rules enacted and summaries of the final rule sets and player standings for each
game. Finally, we then take a closer look at some of the more interesting rules created
during the course of the two games.

B.1 Initial rules

Table B.1: Initial rules for both games.

Rule ID Clause

101 every player is permitted to climb up the tree
102 every player is permitted to climb down the tree
103 every player is permitted to pick one banana
104 every player is permitted to throw a banana at any player
201 at some point every player is obliged to enact a new rule
202 at all times from 3 b’clock every player is permitted to abolish an existing rule
301 if any player has more than 10 bananas then every player is forbidden to throw a banana

at any player

Total rules: 7

84

APPENDIX B. GAME TRANSCRIPTS 85

B.2 Turn histories

The following tables list in order all the turns played in both games throughout the
evaluation period, along with each new rule enacted and each existing rule abolished.

B.2.1 Banana Bonanza

Table B.2: Transcript for Banana Bonanza game.

Player Action

1 b’clock (Start of game)

SilvanaF – Climbed up the tree

GarethF – Climbed up the tree

AnnaC – Climbed up the tree

JoeC – Enacted rule 302: at all times before 9 b’clock player “JoeC” is permitted to enact
a new rule
– Climbed up the tree

StephenH – Climbed up the tree

2 b’clock

JoeC – Enacted rule 303: at some point every player is obliged to throw a banana at any
player
– Picked a banana

SilvanaF – Climbed up the tree
– Picked a banana

AnnaC – Enacted rule 304: at some point every player is obliged to climb down the tree
– Threw a banana at JoeC

3 b’clock

SilvanaF – Climbed up the tree
– Picked a banana

StephenH – Abolished rule 302

– Climbed up the tree
– Picked a banana

JoeC – Enacted rule 305: if player “AnnaC” has more than 1 bananas then every player
is obliged to throw a banana at player “AnnaC”
– Abolished rule 202

– Climbed up the tree

AnnaC – Picked a banana

4 b’clock

APPENDIX B. GAME TRANSCRIPTS 86

SilvanaF – Enacted rule 306: if player “SilvanaF” has more than 3 bananas then every player
is forbidden to climb up the tree
– Picked a banana

JoeC – Enacted rule 307: at all times between 4 b’clock and 8 b’clock player “SilvanaF”
is obliged to climb down the tree
– Picked a banana

GarethF – Enacted rule 308: every player is forbidden to throw a banana at player “GarethF”
– Climbed down the tree
– Picked a banana
– Threw a banana at StephenH

AnnaC – Enacted rule 309: player “AnnaC” is permitted to climb up the tree
– Picked a banana

5 b’clock

JoeC – Enacted rule 310: player “JoeC” is permitted to abolish an existing rule
– Picked a banana
– Threw a banana at AnnaC

SilvanaF – Enacted rule 311: at some point between 4 b’clock and 8 b’clock player “JoeC” is
obliged to climb down the tree
– Climbed down the tree
– Threw a banana at AnnaC

NicolaVH – Enacted rule 312: (nothing)
– Threw a banana at AnnaC

StephenH – Enacted rule 313: player “SilvanaF” is forbidden to pick one banana
– Picked a banana
– Threw a banana at AnnaC

JeanLucP – Threw a banana at AnnaC

6 b’clock

SilvanaF – Enacted rule 314: player “SilvanaF” is permitted to abolish an existing rule

StephenH – Picked a banana
– Threw a banana at SilvanaF

AnnaC – Enacted rule 315: player “AnnaC” is permitted to abolish an existing rule
– Abolished rule 304

JoeC – Enacted rule 316: at all times from 6 b’clock player “StephenH” is obliged to
climb down the tree
– Abolished rule 314

– Climbed up the tree
– Picked a banana
– Threw a banana at StephenH

7 b’clock

APPENDIX B. GAME TRANSCRIPTS 87

JoeC – Enacted rule 317: at all times every player is forbidden to throw a banana at
player “JoeC”
– Abolished rule 101

– Climbed down the tree
– Picked a banana

StephenH – Enacted rule 318: player “JoeC” is obliged to concurrently throw a banana at
player “GarethF” and climb down the tree
– Climbed down the tree

AnnaC – Enacted rule 319: player “AnnaC” is permitted to pick one banana
– Abolished rule 305

SilvanaF – Enacted rule 320: at some point between 7 b’clock and 8 b’clock player “JoeC” is
obliged to climb down the tree

8 b’clock

JoeC – Enacted rule 321: player “JoeC” is permitted to climb up the tree
– Abolished rule 308

– Climbed down the tree
– Threw a banana at GarethF

StephenH – Enacted rule 322: player “StephenH” is obliged to pick one banana
– Climbed down the tree

SilvanaF – Enacted rule 323: at all times between 8 b’clock and 9 b’clock player “JoeC” is
obliged to climb down the tree
– Climbed down the tree

AnnaC – Climbed up the tree
– Picked a banana

JeanLucP – Enacted rule 324: every player is forbidden to concurrently throw a banana at
any player and pick one banana
– Picked a banana
– Threw a banana at AnnaC

9 b’clock

JoeC – Abolished rule 309

– Climbed up the tree
– Picked a banana
– Threw a banana at AnnaC

StephenH – Enacted rule 325: player “JoeC” is obliged to throw a banana at player “Nico-
laVH”
– Climbed down the tree
– Picked a banana

AnnaC – Threw a banana at JeanLucP

APPENDIX B. GAME TRANSCRIPTS 88

B.2.2 Potassium Paradise

Table B.3: Transcript for Potassium Paradise game.

Player Action

1 b’clock (Start of game)

MikeAV – Climbed up the tree

ChristinaH – Enacted rule 302: if any player has exactly 7 bananas then every player is forbid-
den to enact a new rule
– Climbed up the tree

MichaelP – Enacted rule 303: if any player has exactly 5 bananas then every player is obliged
to climb down the tree
– Climbed up the tree

YokoO – Enacted rule 304: every player is forbidden to throw a banana at player “YokoO”
– Climbed up the tree

RichardH – Enacted rule 305: every player is forbidden to throw a banana at player “Ri-
chardH”
– Climbed up the tree

2 b’clock

MikeAV – Enacted rule 306: every player is forbidden to throw a banana at player “MikeAV”
– Climbed down the tree
– Picked a banana

ChristinaH – Enacted rule 307: every player is forbidden to throw a banana at player “Christi-
naH”
– Climbed up the tree
– Picked a banana

YokoO – Enacted rule 308: player “RichardH” is obliged to climb down the tree
– Climbed up the tree
– Picked a banana

3 b’clock

MikeAV – Enacted rule 309: player “ChristinaH” is obliged to climb down the tree
– Climbed up the tree

YokoO – Abolished rule 305

– Climbed down the tree
– Picked a banana
– Threw a banana at RichardH

DianneB – Enacted rule 310: every player is forbidden to throw a banana at player “Dian-
neB”

APPENDIX B. GAME TRANSCRIPTS 89

MichaelP – Enacted rule 311: at all times every player is permitted to throw a banana at any
player
– Climbed up the tree
– Picked a banana

ChristinaH – Abolished rule 309

4 b’clock

MikeAV – Enacted rule 312: if player “ChristinaH” has more than 1 bananas then player
“MichaelP” is obliged to throw a banana at player “ChristinaH”
– Abolished rule 307

– Climbed up the tree
– Picked a banana

DianneB – Climbed up the tree

ChristinaH – Enacted rule 313: player “MikeAV” is forbidden to climb up the tree
– Climbed up the tree
– Picked a banana

YokoO – Climbed up the tree
– Picked a banana
– Threw a banana at MichaelP

MichaelP – Enacted rule 314: every player is forbidden to throw a banana at player “Mi-
chaelP”
– Abolished rule 310

– Climbed up the tree

5 b’clock

MikeAV – Enacted rule 315: player “ChristinaH” is obliged to climb down the tree
– Abolished rule 313

– Climbed up the tree
– Picked a banana

ChristinaH – Enacted rule 316: player “YokoO” is forbidden to climb up the tree
– Picked a banana

YokoO – Abolished rule 316

– Climbed up the tree
– Picked a banana
– Threw a banana at ChristinaH

6 b’clock

YokoO – Enacted rule 317: every player is forbidden to climb up the tree
– Abolished rule 306

– Picked a banana
– Threw a banana at MikeAV

APPENDIX B. GAME TRANSCRIPTS 90

MikeAV – Enacted rule 318: player “YokoO” is obliged to climb down the tree
– Abolished rule 317

– Climbed up the tree

ChristinaH – Enacted rule 319: if player “YokoO” is at the emergents level then player “YokoO”
is obliged to throw a banana at player “MikeAV”
– Abolished rule 315

DianneB – Climbed up the tree

7 b’clock

MichaelP – Enacted rule 320: player “YokoO” is obliged to climb down the tree
– Picked a banana

MikeAV – Enacted rule 321: player “YokoO” is obliged to throw a banana at player “Dian-
neB”
– Abolished rule 319

– Climbed up the tree
– Picked a banana

ChristinaH – Enacted rule 322: if player “YokoO” has exactly 2 bananas then player “MikeAV”
is obliged to throw a banana at player “YokoO”
– Abolished rule 312

– Climbed up the tree

DianneB – Enacted rule 323: player “YokoO” is obliged to throw a banana at player “Mi-
chaelP”
– Picked a banana

CharlesD – Climbed up the tree

8 b’clock

MichaelP – Enacted rule 324: every player is forbidden to throw a banana at player “Mi-
chaelP”
– Abolished rule 316

– Climbed up the tree
– Picked a banana

CharlesD – Climbed up the tree
– Picked a banana

ChristinaH – Enacted rule 325: every player is forbidden to throw a banana at player “Christi-
naH”
– Climbed up the tree
– Picked a banana

DianneB – Picked a banana

YokoO – Climbed up the tree
– Picked a banana
– Threw a banana at DianneB

APPENDIX B. GAME TRANSCRIPTS 91

9 b’clock

ChristinaH – Abolished rule 304

– Climbed up the tree
– Picked a banana

YokoO – Picked a banana
– Threw a banana at CharlesD

B.3 Final summaries

This section contains summaries of the final set of rules and player standings for each
game.

B.3.1 Banana Bonanza

Table B.4: Final rules for Banana Bonanza game.

Rule ID Clause

102 every player is permitted to climb down the tree
103 every player is permitted to pick one banana
104 every player is permitted to throw a banana at any player
201 at some point every player is obliged to enact a new rule
301 if any player has more than 10 bananas then every player is forbidden to throw a banana

at any player
303 at some point every player is obliged to throw a banana at any player
306 if player “SilvanaF” has more than 3 bananas then every player is forbidden to climb up

the tree
307 at all times between 4 b’clock and 8 b’clock player “SilvanaF” is obliged to climb down

the tree
310 player “JoeC” is permitted to abolish an existing rule
311 at some point between 4 b’clock and 8 b’clock player “JoeC” is obliged to climb down the

tree
312 (nothing)
313 player “SilvanaF” is forbidden to pick one banana
315 player “AnnaC” is permitted to abolish an existing rule
316 at all times from 6 b’clock player “StephenH” is obliged to climb down the tree
317 at all times every player is forbidden to throw a banana at player “JoeC”
318 player “JoeC” is obliged to concurrently throw a banana at player “GarethF” and climb

down the tree
319 player “AnnaC” is permitted to pick one banana
320 at some point between 7 b’clock and 8 b’clock player “JoeC” is obliged to climb down the

tree
321 player “JoeC” is permitted to climb up the tree

APPENDIX B. GAME TRANSCRIPTS 92

322 player “StephenH” is obliged to pick one banana
323 at all times between 8 b’clock and 9 b’clock player “JoeC” is obliged to climb down the

tree
324 every player is forbidden to concurrently throw a banana at any player and pick one

banana
325 player “JoeC” is obliged to throw a banana at player “NicolaVH”

Total rules: 23

Table B.5: Final player standings for Banana Bonanza game.

Bananas left 20

Emergents level –

Canopy level –

Under Story level JoeC (1 banana)

Forest Floor level SilvanaF (0 bananas)
NicolaVH (0 bananas)
JeanLucP (0 bananas)

GarethF (0 bananas)
AnnaC (0 bananas)
StephenH (0 bananas)

B.3.2 Potassium Paradise

Table B.6: Final rules for Potassium Paradise game.

Rule ID Clause

101 every player is permitted to climb up the tree
102 every player is permitted to climb down the tree
103 every player is permitted to pick one banana
104 every player is permitted to throw a banana at any player
201 at some point every player is obliged to enact a new rule
202 at all times from 3 b’clock every player is permitted to abolish an existing rule
301 if any player has more than 10 bananas then every player is forbidden to throw a banana

at any player
302 if any player has exactly 7 bananas then every player is forbidden to enact a new rule
303 if any player has exactly 5 bananas then every player is obliged to climb down the tree
308 player “RichardH” is obliged to climb down the tree
311 at all times every player is permitted to throw a banana at any player
314 every player is forbidden to throw a banana at player “MichaelP”
318 player “YokoO” is obliged to climb down the tree
320 player “YokoO” is obliged to climb down the tree
321 player “YokoO” is obliged to throw a banana at player “DianneB”
322 if player “YokoO” has exactly 2 bananas then player “MikeAV” is obliged to throw a

banana at player “YokoO”

APPENDIX B. GAME TRANSCRIPTS 93

323 player “YokoO” is obliged to throw a banana at player “MichaelP”
324 every player is forbidden to throw a banana at player “MichaelP”
325 every player is forbidden to throw a banana at player “ChristinaH”

Total rules: 19

Table B.7: Final player standings for Potassium Paradise game.

Bananas left 14

Emergents level ChristinaH (2 bananas)

Canopy level YokoO (2 bananas)
MikeAV (1 banana)

MichaelP (2 bananas)

Under Story level –

Forest Floor level DianneB (0 bananas)
CharlesD (0 bananas)

RichardH (0 bananas)

B.4 Interesting behaviour

This section contains some of the more interesting rules and tactics which emerged
during the BanaNomic evaluation games.

Self-protective rules

One of the first trends to emerge was that of self-protecting rules, in particular:

YokoO : every player is forbidden to throw a banana at player “YokoO”

As soon as the first player came up with this rule, practically all the other players im-
mediately followed suit. Evidently, it was going to be a monkey-eat-monkey kind of
game.

The prohibition loophole

As mentioned § 8.4, it didn’t take players too long to notice that any prohibitive rules
could easily be circumvented by simply abolishing them and carrying out whatever
action they were meant to prohibit within the same turn. For example, at one point the
following rule was enacted:

ChristinaH : 316. player “YokoO” is forbidden to climb up the tree

However in the next turn, YokoO immediately got around this by choosing to abolish
rule 316 and climb up the tree in a single go.

APPENDIX B. GAME TRANSCRIPTS 94

Blind vengeance

One player in particular exhibited a notable ruthlessness in their approach; after JoeC
was hit by a banana thrown by AnnaC, he proceeded to enact this rule:

JoeC : if player “AnnaC” has more than 1 bananas then every player is obliged to
throw a banana at player “AnnaC”

While this did result in everyone throwing a banana at AnnaC, all players actually had
to throw their bananas at her in the same turn. This was really quite a waste of everyone’s
effort as after the first banana was thrown, AnnaC had nothing left to lose anyway.

Exploiting security holes

While some players tended to create protective rules such that no bananas could be
thrown at them, others seemed to find creative ways of poking holes in these approaches.
One player first enacted this rule to protect her position at the top of the tree:

SilvanaF : if player “SilvanaF” has more than 3 bananas then every player is for-
bidden to climb up the tree

This may look fairly safe, but JoeC cleverly managed to circumvent this by bringing the
mountain to him:

JoeC : at all times between 4 b’clock and 8 b’clock player “SilvanaF” is obliged to
climb down the tree

Thus SilvanaF was forced to leave her safety zone, exposing herself to further attacks.

Getting others to do your dirty work

Another clever tactic used by some players was getting their opponents to deal with their
potential threats. One good example of this is:

ChristinaH : if player “YokoO” is at the emergents level then player “YokoO” is
obliged to throw a banana at player “MikeAV”

This allowed ChristinaH to throw a banana any other player she wished, safe in the
knowledge that MikeAV was already being taken care of.

Down you go, and stay there!

In another brilliant exhibition of ruthlessness, JoeC enacted the following rule while
simultaneously throwing a banana at poor StephenH:

APPENDIX B. GAME TRANSCRIPTS 95

JoeC : at all times from 6 b’clock player “StephenH” is obliged to climb down the
tree

This turn was clearly intended to send StephenH to the bottom of the tree, and totally
prevent him from further advancing in the game by prohibiting him to climb up again.
Quite an effective combination!

Two birds, one stone

StephenH was not without his own fair share of deviousness (see previous item), and
quickly devised the following rule to get back at his aggressor and also take care of
another opponent at the same time:

StephenH : player “JoeC” is obliged to concurrently throw a banana at player “Ga-
rethF” and climb down the tree

Clutching at straws

Finally, desperation seemed to get the better of some players, who tried to enact permis-
sions for themselves that already existed, in the hopes that they would somehow “work
more”. In one game, the following initial rules had still remained intact:

103. every player is permitted to pick one banana
201. at some point every player is obliged to enact a new rule

However this not stop these players from re-enacting the same thing, in the hopes that
other prohibitions for these actions would somehow become cancelled out:

AnnaC : player “AnnaC” is permitted to pick one banana
StephenH : player “StephenH” is obliged to pick one banana
SilvanaF : player “SilvanaF” is permitted to abolish an existing rule
AnnaC : player “AnnaC” is permitted to abolish an existing rule

Appendix C

Evaluation forms & results
A collection of all evaluation materials and results. This appendix includes a list of
the evaluation participants, the questions asked of them and their full responses for
both the in-game feedback and the post-game questionnaire.

C.1 Evaluators

Table C.1 shows a list of the evaluators who played BanaNomic and provided in-game
and post-game feedback. Note that some names have been randomly assigned for those
users who wished to remain anonymous.

Table C.1: List of evaluators.

Username Profession/Area of Study Education Level

MichaelP Molecular Genetics/Pharmacy PhD

YokoO Pharmacist MSc

AnnaC Secondary Teacher BSc

JoeC Engineering BSc

DianneB Pharmacist BSc

JeanLucP IT BSc

CharlesD English Teacher BA

StephenH Accountancy BCom

MikeAV Accountancy BCom

ChristinaH Events Project Manager BA

SilvanaF Learning Support Assistant Diploma

GarethF Dental Surgery (student) BChD

NicolaVH Statistician BSc

RichardH Property Surveying LLB

96

APPENDIX C. EVALUATION FORMS & RESULTS 97

C.2 In-game feedback

C.2.1 Feedback form

Generated Text How understandable are the rules of the game at this point?
(0 = Poor, 4 = Great)

Text Input In this turn you added a new rule. How easy was it express what you wanted
to?
(0 = Poor, 4 = Great)

Gameplay For this turn, how well could you understand what was going on?
(0 = Poor, 4 = Great)

Other Comments
(Free-text box)

C.2.2 Feedback responses

Table C.2 is a raw list of feedback submitted by users in the evaluation period. The
rating columns are abbreviated as follows:

1. G — Rating for generated text
2. I — Rating for input method
3. P — Rating for general game play
4. M — Input method used, where:

• SP — Suggest Panel
• FM — Fridge Magnets

The user comments have been corrected for typographical errors.

Table C.2: In-game feedback evaluation data.

Date User Comment G1 I2 P3 M4

2010-04-15 MikeAV Prosit John! Seems like fun, looking forward to
playing my next turn.

4 - 4 -

2010-04-15 ChristinaH I like the predictive text in the rules box - makes
it easier.

2 4 2 SP

2010-04-15 MichaelP Personally I wouldn’t start the Monkey’s on the
forest floor as it seems to be a waste of a turn, as
everyone will just climb up one (a bit predictable)
having 2 turns just for the first day might help

3 3 4 SP

APPENDIX C. EVALUATION FORMS & RESULTS 98

2010-04-15 SilvanaF This first step was easy, but there are too many
rules to remember. Maybe once I get used to the
game it will get easier. Let’s hope the game will
not have ended by the time I get the hang of it!
Bear with me!! Good luck anyway!

3 - 3 -

2010-04-15 GarethF For some reason I didn’t manage to play the game
using my laptop but it worked perfectly on the
other pc. . .

3 - 3 -

2010-04-15 AnnaC It seems that there are a lot of rules to follow but
hopefully playing the game will make them more
obvious

2 - 2 -

2010-04-15 JoeC It was easier to pick phrases from the list then use
the dropdown menus

2 3 2 FM

2010-04-15 StephenH - 2 - 2 -

2010-04-15 YokoO Fridge magnet method of enacting rules very easy
to use.

3 4 4 FM

2010-04-15 RichardH - 0 2 1 SP

2010-04-16 JoeC It didn’t let me stop players from getting bananas! 3 3 3 FM

2010-04-16 MikeAV - 4 4 4 SP

2010-04-16 ChristinaH I think ‘a player’ was clearer than ‘every player’
but from your facebook message I might be in the
minority

2 3 3 SP

2010-04-16 SilvanaF I understood the rules ok but now I hope I will be
able to abolish rule 101 before I quit the game!

3 - 3 -

2010-04-16 AnnaC Although asked to enact a new rule, the choice
was very restricted. However, the phrases came
up in turn well.

2 2 2 SP

2010-04-17 YokoO I was unable to play and was receiving errors, but
after the bug was fixed I could play successfully!

4 4 3 FM

2010-04-17 SilvanaF - 4 - 4 -

2010-04-17 MikeAV - 4 4 4 SP

2010-04-17 StephenH - 4 - 4 -

2010-04-17 YokoO Easy to get around existing rules by abolishing an
old one.

4 - 4 -

2010-04-17 DianneB - 3 3 2 SP

2010-04-17 JoeC - 4 4 3 FM

2010-04-17 AnnaC - 3 - 3 -

2010-04-17 MichaelP - 3 4 3 SP

2010-04-17 ChristinaH For some reason I couldn’t enact a new rule 2 - 1 -

APPENDIX C. EVALUATION FORMS & RESULTS 99

2010-04-18 MikeAV - 4 4 4 SP

2010-04-18 DianneB - 3 - 2 -

2010-04-18 SilvanaF How cruel I am but I enjoying winning!!! 3 3 3 SP

2010-04-18 ChristinaH I wanted to add this rule but could not: every
player is forbidden to have more bananas than
"ChristinaH". Overall, the rules you can set are
limited even if you understand the language with
which you can set new rules

3 1 3 SP

2010-04-18 YokoO Forgot to tick "enact" a new rule so my MEGA
rule was not implemented.

4 - 2 -

2010-04-18 JoeC As the game develops, the possibilities become
more interesting

4 4 3 FM

2010-04-18 GarethF I had some obligations to fill and my turn wasn’t
accepted until I did them, the problem was that
the error message did not tell me why my turn
was not accepted, the error message was too ge-
neric.

2 4 0 FM

2010-04-18 AnnaC - 3 4 3 SP

2010-04-18 MichaelP - 4 4 4 SP

2010-04-19 MichaelP Rule says I have to throw a banana - but I have
zero bananas, which means I cannot play my turn.

- - - -

2010-04-19 JoeC - 3 4 3 FM

2010-04-19 MikeAV - 4 4 4 SP

2010-04-19 ChristinaH I tried to enact the rule: if player ChristinaH is
at the Emergents level then player YokoO is for-
bidden to climb up the tree, but it didn’t let me,
although I can’t quite figure out why because I
couldn’t see a conflicting rule

4 3 4 SP

2010-04-19 SilvanaF I’m getting the hang of it now. I can unders-
tand why AnnaC threw a banana at JoeC, I would
gladly throw him down the tree!

3 4 4 SP

2010-04-19 NicolaVH I had many obligations, but I couldn’t act out all
of them. I’m still not quite sure what I’m suppo-
sed to be doing!

1 1 1 FM

2010-04-19 StephenH - 3 4 2 SP

2010-04-19 AnnaC Some smart a-- made a rule that I have to throw a
banana - and I do not have any to throw :(

- - - -

2010-04-19 YokoO It was quite easy to get round other people’s rules 3 - 4 -

2010-04-19 DianneB - 2 3 3 SP

APPENDIX C. EVALUATION FORMS & RESULTS 100

2010-04-20 SilvanaF I could not chose more than 1 action in my new
rule I do not know if that was because of what
player JoeC rules said about me.

3 3 4 SP

2010-04-20 YokoO - 4 4 4 SP

2010-04-20 MikeAV - 4 4 4 FM

2010-04-20 ChristinaH - 4 4 4 SP

2010-04-20 StephenH - 3 - 3 -

2010-04-20 DianneB - 3 - 3 -

2010-04-20 AnnaC - 3 4 3 SP

2010-04-20 JoeC It’s a great game! 4 4 4 FM

2010-04-21 MichaelP - 4 4 4 SP

2010-04-21 JoeC I changed my input method. At first I was using
the ‘fridge magnets’ method, and got quite used
to it, but now I tried the direct input method and
found that it works well once you know roughly
how to enact the rules

4 4 3 SP

2010-04-21 MikeAV - 4 4 4 SP

2010-04-21 ChristinaH How come I don’t have the option to pick a ba-
nana?

4 4 4 SP

2010-04-21 StephenH - 3 3 3 SP

2010-04-21 AnnaC I have been spending more time counteracting
other people’s rules against me than going up the
tree or picking bananas

3 2 2 SP

2010-04-21 DianneB - 3 3 3 SP

2010-04-21 CharlesD Not sure how I’m meant to get bananas at this
point but just trying it out

2 - 1 -

2010-04-21 SilvanaF I had 3 obligations and could only enact the
rule because I was already on d forest floor and
couldn’t throw a banana at anyone since d box
was grey. I didn’t quite understand what I was
meant to do. Anyway after several attempts I ma-
naged it though not what I really wanted to do. . .

2 3 1 SP

2010-04-21 YokoO In this turn I was obliged to throw a banana at a
number of players and climb down a level. The
"throw a banana" box was already ticked and I
could not in any way change the name of the
player I wanted to throw a banana at. I ended
up wasting 1 banana as the player was not even
on my level.

2 2 2 FM

2010-04-22 MichaelP - 3 4 4 SP

APPENDIX C. EVALUATION FORMS & RESULTS 101

2010-04-22 JoeC I have used this to my advantage, however the
capability to remove rules should not be remo-
vable, as this tends to kill the game. Also, I think
it would be better if monkeys could throw bana-
nas at people below them rather than at the same
level, and not lose all bananas and fall off. It is too
harsh.

4 4 4 SP

2010-04-22 MikeAV Couldn’t play my turn - even though I was trying
to climb the tree to carry out my obligation. Since
the rules are processed in order I thought I would
be able to. mav

- - - -

2010-04-22 CharlesD - 2 - 2 -

2010-04-22 StephenH - 1 4 1 SP

2010-04-22 SilvanaF I don’t think anyone will win the game because
we all have 0 bananas except HIM and no one can
throw him a banana!!

3 3 3 SP

2010-04-22 ChristinaH Easy peasy 4 4 4 SP

2010-04-22 AnnaC - 3 - 3 -

2010-04-22 DianneB - 3 - 3 -

2010-04-22 JeanLucP There is a huge amount of information and rules
that needs to be taken into account both on a
constant basis (time constraints) as well as during
one’s turn, which tends to make strategies for rule
creation and use a bit obscure.

1 3 2 SP

2010-04-22 YokoO Previous problem seems to have been fixed! 3 - 4 -

2010-04-23 JoeC - 4 - 4 -

2010-04-23 StephenH - 3 3 3 SP

2010-04-23 ChristinaH - 4 - 4 -

2010-04-23 SilvanaF I had one obligation and no bananas to throw, al-
though I do not know why I was not permitted to
climb the tree and pick a banana since they were
all in black!

- - - -

2010-04-23 AnnaC There are too many rules and counter rules. I en-
ded up playing what it let me not what I wanted.
But it’s been a bit of fun.

2 - 2 -

2010-04-23 YokoO - 4 - 3 -

APPENDIX C. EVALUATION FORMS & RESULTS 102

C.3 Post-game questionnaire

C.3.1 Questionnaire form

About the game

Understanding the game concept When you first learned about the game, how easy was it
understand the concept of the game?
(1 = Difficult, 5 = Easy)

The dynamic rule system Did having a system of changeable rules make the game more
interesting (better) or too confusing (worse)?
(1 = Too confusing, 5 = Interesting)

Balance between rules and actions Do you think a good balance was achieved between
the ‘rules’ aspect of the game and the simple actions (climb up/down, pick/throw
banana)?
(1 = Too rule-focused (complicated), 5 = Too action-focused (mundane))

About the language used

Generated text When reading the rules set by other players, were they easy to understand
or did they tend to be ambiguous?
(1 = Ambiguous, 5 = Very understandable)

Composing rules When creating new rules, how easy was it to express what you wanted
to say?
(1 = Difficult, 5 = Easy)

Input method Which input method would you say you preferred to use when composing
new rules?

• Suggest Panel
• Fridge Magnets
• No preference

Why? Reasons for your choice in the previous question (optional).
(Free-text box)

Would you have preferred a blank text box? Instead of the Suggest Panel or Fridge Ma-
gnets, would you have preferred a blank box where you could type anything you
liked?

• Yes, a blank text box would have been better
• No, the methods provided were adequate

Language barrier Overall, how much would you say the language used in the game (i.e.
the wording of the rules) was a barrier to your participation and enjoyment?
(1 = Language was a big problem, 5 = Language was not a problem at all)

APPENDIX C. EVALUATION FORMS & RESULTS 103

Others

Comments Any other comments you may have about the game in general.
(Free-text box)

C.3.2 Questionnaire responses

1. C — Initial understanding of the game concept
2. R — Reaction to the self-amending rules system
3. B — Balance between rule-amendment and simple actions
4. G — Quality of generated text
5. I — Expressivity of input methods
6. M — Preferred input method, where:

• SP — Suggest Panel
• FM — Fridge Magnets
• N/P — No preference

7. F — Preferability of a free-text input method (Yes/No)
8. L — Language used as a barrier to playability
9. Why/Comments — Combines the Why? and Comments fields together.

The user comments have been corrected for typographical errors.

Table C.3: Post-game questionnaire responses.

User C1 R2 B3 G4 I5 M6 F7 L8 Why/Comments
9

AnnaC 3 3 1 2 4 SP No 4 Why? It was the first one to come up,
so did not bother to use the other since
I found this method easy. The fridge-
magnet method was just as easy to use.
Comments If there had been a blank text
box to make rules, the possibilities would
have been endless and the rules more dif-
ficult to follow.

DianneB 3 4 3 4 4 SP No 5 -

MichaelP 4 4 2 4 5 SP No 5 Why? The Drop down suggestions gave
a variety of options which you could ea-
sily choose from in order to get you point
across.

GarethF 3 4 2 4 5 FM No 4 -

NicolaVH 4 1 3 4 3 FM No 4 Why? I only managed to play once and I
used the fridge magnets option. I didn’t
get to try the drop-down menu.

APPENDIX C. EVALUATION FORMS & RESULTS 104

JoeC 4 5 2 2 5 SP Yes 5 Why? It seemed that there were more op-
tions available to me using this method.
Comments In general, I found the game
too negative. Although I won, this was
mainly by stopping everyone else from get-
ting anywhere. It would be better if the
‘allowed’ took precedence over the ‘forbid-
den’.

YokoO 3 5 3 4 5 FM No 5 Why? Fridge Magnets method was ac-
tually helpful in creating interesting rules.

MikeAV 4 4 3 5 5 SP No 5 -

ChristinaH 4 5 3 5 5 SP Yes 4 Comments With writing the rules - it was
good to have the drop-down suggestions,
especially for the first few goes, but once
you get the hang of it it would have been
better to have the option of having a blank
box - maybe the option to choose if you
want ‘predictive rules’ or not. Overall, the
game was quite hard to understand at first
- mainly because I wasn’t sure what I was
allowed/not allowed to do - but saying
that I never read the help.

CharlesD 2 3 2 3 3 N/P No 5 Why? Both were equally confusing to me
but then I jumped in without reading the
instruction book. Then went back to the
book to try get an idea, then went back to
the game to try figure it out by playing.

RichardH 2 4 3 3 2 N/P Yes 3 -

StephenH 3 3 1 4 4 SP No 5 -

JeanLucP 4 2 2 5 5 SP No 4 Why? The method was more streamlined
and quick to use.

SilvanaF 2 3 2 4 5 SP No 5 Why? Because there was no need to worry
about how to word the rules!
Comments Just wish we had more time!
It would have been fun to see how things
would have developed! Anyway it was
fun. Good luck!

Appendix D

Selected code fragments
A selection of source code snippets from the most important areas of the project.
The snippets in this appendix only constitute a small part of the entire project. For
clarity, sections have been left out and comments omitted. For full versions of the
source code, please refer to the included CD.

D.1 Game evaluator

D.1.1 Contract logic grammar

module ContractGrammar where

data Time =
T_Time Integer

| T_None

data GameState = GameState {
gs_Name :: String

, gs_Time :: Integer
, gs_Points :: Points
, gs_Players :: [Player]
, gs_Rules :: [Rule]
, gs_Pending :: [Rule]
, gs_Schedule :: [Event]
, gs_History :: [Event]

}

type PlayerName = String
type Points = Integer
type Level = Integer
data Player = P_Player {

p_Name :: PlayerName
, p_Points :: Points
, p_Level :: Level

105

APPENDIX D. SELECTED CODE FRAGMENTS 106

}

type RuleID = Integer
data Rule = Rule RuleID Contract

data Contract =
C_Empty

| C_Deontic DeonticExp
| C_Choice [Contract]
| C_Always Time Time Contract
| C_Sometimes Time Time Contract
| C_Conditional DeonticExp Contract Contract
| C_Query Query Contract Contract

data DeonticExp =
DE_Obliged PlayerName Activity

| DE_Permitted PlayerName Activity
| DE_Forbidden PlayerName Activity

data Query =
Q_Not Query

| Q_Conjunction Query Query
| Q_Disjunction Query Query
| Q_PointsGt PlayerName Points
| Q_PointsEq PlayerName Points
| Q_PointsLt PlayerName Points
| Q_LevelEq PlayerName Level

data Event =
E_None

| E_Activity PlayerName Activity
| E_Time Time

data Activity =
A_Empty

| A_Action Action
| A_Choice [Activity] -- choice / disjunction
| A_Concurrent [Activity] -- concurrency / conjunction

data Action =
An_ClimbUp

| An_ClimbDown
| An_PickBanana
| An_ThrowBanana PlayerName
| An_Enact Rule
| An_Abolish Rule

APPENDIX D. SELECTED CODE FRAGMENTS 107

D.1.2 XML gamestate representation

Schema

This XML schema was created with the help of HiT Software’s online XML Tools1.

<?xml version ="1.0" encoding ="UTF -8" ?>

<xs:schema xmlns:xs="http :// www.w3.org /2001/ XMLSchema">

<!-- Individual elements -->

<xs:element name="int">
<xs:complexType >

<xs:attribute name=" value" type="xs:integer" use=" required" />
</xs:complexType >

</xs:element >

<xs:element name="time">
<xs:complexType >

<xs:attribute name=" value" type="xs:integer" use=" optional" />
</xs:complexType >

</xs:element >

<xs:element name=" player">
<xs:complexType >

<xs:attribute name="name" type="xs:string" use=" required" />
<xs:attribute name=" points" type="xs:integer" use=" optional" />
<xs:attribute name=" level" type="xs:integer" use=" optional" />

</xs:complexType >
</xs:element >

<xs:element name="rule">
<xs:complexType >

<xs:attribute name="id" type="xs:integer" use=" required" />
<xs:sequence >

<xs:element ref=" contract" />
</xs:sequence >

</xs:complexType >
</xs:element >

<xs:element name=" contract">
<xs:complexType >

<xs:attribute name="type" use=" required">
<xs:simpleType >

<xs:restriction base="xs:string">
<xs:enumeration value=" empty" />
<xs:enumeration value=" deontic" />

1http://www.hitsw.com/xml_utilites/

http://www.hitsw.com/xml_utilites/

APPENDIX D. SELECTED CODE FRAGMENTS 108

<xs:enumeration value=" choice" />
<xs:enumeration value=" always" />
<xs:enumeration value=" sometimes" />
<xs:enumeration value=" conditional" />
<xs:enumeration value=" query" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:choice >

<xs:element ref="time" />
<xs:element ref=" query" />
<xs:element ref=" deontic" />
<xs:element ref=" contract" />
<xs:element ref=" contracts" />

</xs:choice >
</xs:complexType >

</xs:element >

<xs:element name=" contracts">
<xs:complexType >

<xs:sequence >
<xs:element ref=" contract" maxOccurs =" unbounded" />

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:element name=" deontic">
<xs:complexType >

<xs:attribute name="type" use=" required">
<xs:simpleType >

<xs:restriction base="xs:string">
<xs:enumeration value=" forbidden" />
<xs:enumeration value=" obliged" />
<xs:enumeration value=" permitted" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:sequence >

<xs:element ref=" player" />
<xs:element ref=" activity" />

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:element name=" query">
<xs:complexType >

<xs:attribute name="type" use=" required">
<xs:simpleType >

APPENDIX D. SELECTED CODE FRAGMENTS 109

<xs:restriction base="xs:string">
<xs:enumeration value="not" />
<xs:enumeration value=" conjunction" />
<xs:enumeration value=" disjunction" />
<xs:enumeration value=" points_gt" />
<xs:enumeration value=" points_eq" />
<xs:enumeration value=" points_lt" />
<xs:enumeration value=" level_eq" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:choice >

<xs:sequence >
<xs:element ref=" query" maxOccurs ="2" />

</xs:sequence >
<xs:sequence >

<xs:element ref=" player" />
<xs:element ref="int" />

</xs:sequence >
</xs:choice >

</xs:complexType >
</xs:element >

<xs:element name=" activity">
<xs:complexType >

<xs:attribute name="type" use=" required">
<xs:simpleType >

<xs:restriction base="xs:string">
<xs:enumeration value=" empty" />
<xs:enumeration value=" action" />
<xs:enumeration value=" choice" />
<xs:enumeration value=" concurrent" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:choice >

<xs:sequence >
<xs:element ref=" activity" minOccurs ="1" />

</xs:sequence >
<xs:sequence >

<xs:element ref=" action" />
</xs:sequence >

</xs:choice >
</xs:complexType >

</xs:element >

<xs:element name=" action">
<xs:complexType >

APPENDIX D. SELECTED CODE FRAGMENTS 110

<xs:attribute name="type" use=" required">
<xs:simpleType >

<xs:restriction base="xs:string">
<xs:enumeration value=" enact" />
<xs:enumeration value=" abolish" />
<xs:enumeration value=" climb_down" />
<xs:enumeration value=" climb_up" />
<xs:enumeration value=" pick_banana" />
<xs:enumeration value=" throw_banana" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:choice >

<xs:element ref=" player" />
<xs:element ref="rule" />

</xs:choice >
</xs:complexType >

</xs:element >

<xs:element name=" event">
<xs:complexType >

<xs:attribute name="type" use=" required">
<xs:simpleType >

<xs:restriction base="xs:string">
<xs:enumeration value="none" />
<xs:enumeration value="time" />
<xs:enumeration value=" activity" />

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:choice >

<xs:element ref="time" />
<xs:sequence >

<xs:element ref=" player" />
<xs:element ref=" activity" />

</xs:sequence >
</xs:choice >

</xs:complexType >
</xs:element >

<!-- Overall gamestate structure -->

<xs:element name=" gamestate">
<xs:complexType >

<xs:sequence >
<xs:element ref=" players" />
<xs:element ref=" rules" />
<xs:element ref=" pending" />

APPENDIX D. SELECTED CODE FRAGMENTS 111

<xs:element ref=" schedule" />
<xs:element ref=" history" />

</xs:sequence >
<xs:attribute name="name" type="xs:string" use=" required" />
<xs:attribute name=" points" type="xs:integer" use=" required" />
<xs:attribute name="time" type="xs:integer" use=" required" />

</xs:complexType >
</xs:element >

<xs:element name=" players">
<xs:complexType >

<xs:sequence >
<xs:element ref=" player" maxOccurs =" unbounded" />

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:element name=" rules">
<xs:complexType >

<xs:sequence >
<xs:element ref="rule" maxOccurs =" unbounded" />

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:element name=" pending">
<xs:complexType >

<xs:sequence >
<xs:element ref="rule" maxOccurs =" unbounded" />

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:element name=" schedule">
<xs:complexType >

<xs:sequence >
<xs:element ref=" event" />

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:element name=" history">
<xs:complexType >

<xs:sequence >
<xs:element ref=" event" maxOccurs =" unbounded" />

</xs:sequence >
</xs:complexType >

</xs:element >

APPENDIX D. SELECTED CODE FRAGMENTS 112

</xs:schema >

Gamestate example

<gamestate name=" Banana Bonanza" points ="27" time ="3">
<players >

<player level ="2" name=" JohnL" points ="1" />
<player level ="1" name=" RingoS" points ="5" />
<player level ="0" name=" GeorgeH" points ="0" />

</players >
<rules >

<rule id="101" >
<contract type=" deontic">

<deontic type=" permitted">
<player name=" GENERIC" />
<activity type=" action">

<action type=" climb_up" />
</activity >

</deontic >
</contract >

</rule >
<rule id="201" >

<contract type=" sometimes">
<time />
<time value ="5" />
<contract type=" deontic">

<deontic type=" obliged">
<player name=" RingoS" />
<activity type=" action">

<action type=" pick_banana" />
</activity >

</deontic >
</contract >

</contract >
</rule >

</rules >
<pending >

<rule id="20101" >
<contract type=" deontic">

<deontic type=" obliged">
<player name=" RingoS" />
<activity type=" empty" />

</deontic >
</contract >

</rule >
</pending >

APPENDIX D. SELECTED CODE FRAGMENTS 113

<schedule >
<event type="time">

<time value ="1" />
</event >

</schedule >
<history >

<event type=" activity">
<player name=" GeorgeH" />
<activity type=" action">

<action type=" climb_up" />
</activity >

</event >
</history >

</gamestate >

D.2 Grammatical Framework

D.2.1 Abstract contract grammar

abstract Contract = {
flags startcat = Contract ;
flags coding = utf8 ;

cat
Time ;
PlayerName ; Level ;
Contract ; [Contract]{2} ;
DeonticExp ;
Query ;
Activity ; [Activity]{2} ;
Action ;

fun
T_Time : Int -> Time ;
T_None : Time ;

P_Player : String -> PlayerName ;
P_Generic : PlayerName ;
L_0 , L_1 , L_2 , L_3 : Level;

C_Empty : Contract ;
C_Deontic : DeonticExp -> Contract ;
C_Choice : [Contract] -> Contract ;
C_Always : Time -> Time -> Contract -> Contract ;
C_Sometimes : Time -> Time -> Contract -> Contract ;
C_Conditional : DeonticExp -> Contract -> Contract -> Contract ;
C_Query : Query -> Contract -> Contract -> Contract ;

APPENDIX D. SELECTED CODE FRAGMENTS 114

DE_Obliged : PlayerName -> Activity -> DeonticExp ;
DE_Permitted : PlayerName -> Activity -> DeonticExp ;
DE_Forbidden : PlayerName -> Activity -> DeonticExp ;

Q_Not : Query -> Query ;
Q_Conjunction : Query -> Query -> Query ;
Q_Disjunction : Query -> Query -> Query ;
Q_PointsGt : PlayerName -> Int -> Query ;
Q_PointsEq : PlayerName -> Int -> Query ;
Q_PointsLt : PlayerName -> Int -> Query ;
Q_LevelEq : PlayerName -> Level -> Query ;

A_Empty : Activity ;
A_Action : Action -> Activity ;
A_Choice : [Activity] -> Activity ;
A_Concurrent : [Activity] -> Activity ;

An_ClimbUp : Action ;
An_ClimbDown : Action ;
An_PickBanana : Action ;
An_ThrowBanana : PlayerName -> Action ;
An_Enact : Action ;
An_Abolish : Action ;

}

D.2.2 complete() JavaScript extension

This code extends the Parser class as defined in the GF JavaScript library by adding to it
the complete() function. To achieve this, the internal ParseState class is also extended
in a similar way.

/**
* Generate list of suggestions given an input string
*/

Parser.prototype.complete = function (input , cat) {

// Parameter defaults
if (input == null) input = "";
if (cat == null) cat = grammar.abstract.startcat;

// Tokenise input string & remove empty tokens
var tokens = input.trim().split(" ");
for (var i = tokens.length - 1; i >= 0; i--) {

if (tokens[i] == "") { tokens.splice(i, 1); }
}

// Init parse state objects.
// ps2 is used for testing if final token is parsable or not.
var ps = new ParseState(this , cat);

APPENDIX D. SELECTED CODE FRAGMENTS 115

var ps2 = new ParseState(this , cat);

// Iterate over tokens , feed one by one to parser
// See which can be consumed (complete a category)
var consumed = new Array();
var remaining = new Array();
var nextUnconsumedIndex = 0;
// Get value for nextUnconsumedIndex
for (var i = 0; i < tokens.length; i++) {

if (ps2.next(tokens[i])) {
if (ps2.items.value != null) {

nextUnconsumedIndex = i + 1;
}
// else keep going; we may reach another consumable point

} else {
break;

}
}
delete(ps2);

// Consume up until nextUnconsumedIndex
for (var i = 0; i < nextUnconsumedIndex; i++) {

var token = tokens.shift();
ps.next(token);
consumed.push(token);

}
remaining = tokens; // whatever ’s left

// Parse is successful so far , now get suggestions
var acc = ps.complete(remaining);

// Put into suggestion list , avoiding duplicates
var suggs = new Array();
var suggStrings = new Array();
for (var a = 0; a < acc.length; a++) {

var s = acc[a].join();
if (! arrayContains(s, suggStrings)) {

suggs.push(acc[a]);
suggStrings.push(s);

}
}
delete(suggStrings);

// Handle special cases , ie: player
// (Literals just remain as <string >, <int >, <float >)
for (var s = 0; s < suggs.length ; s++) {

switch(suggs[s][0]) {
case "player ":

APPENDIX D. SELECTED CODE FRAGMENTS 116

suggs[s][0] = "<player >";
break;

}
}

// Note: return used tokens too
return { "consumed" : consumed , "suggestions" : suggs };

}

/**
* For a ParseState and a partial input , return all possible completions
* Based closely on ParseState.next()
* currentTokens could be empty or a partial string
*/

ParseState.prototype.complete = function (currentTokens) {

// Initialise accumulator for suggestions
accTokens = new Array ();

this.process(
// Items
this.items.value ,

// Deal with literal categories
function (fid) {

switch (fid) {
// String
case -1:

accTokens.push(["<string >"]);
return;

// Integer
case -2:

accTokens.push(["<int >"]);
return;

// Float
case -3:

accTokens.push(["<float >"]);
return;

}
return null;

},

/**
* Takes an array of tokens and populates accumulator
*/

function (tokens , item) {
// Convert tokens from object to list
var tokens1 = new Array();

APPENDIX D. SELECTED CODE FRAGMENTS 117

for (var i = 0; i < tokens.length; i++) tokens1[i] = tokens[i];
if (currentTokens == "" || tokens1.join(" ").indexOf(

currentTokens.join(" ")) == 0) {
accTokens.push(tokens1);

}
}

);

// Return matches
return accTokens;

}

Glossary of terms

ACE Attempto Controlled English (Fuchs et al., 2008)

AJAX Asynchronous Java And XML

APE Attempto Parsing Engine (Fuchs et al., 2008)

API Application Programming Interface

BNF Backus-Naur Form

CASE Computer-Aided Software Engineering

CELT Controlled English to Logic Translation (Pease and Murray, 2003)

CFG Context-Free Grammar

CLAN CL ANalyser (Fenech et al., 2009c)

CL Contract Logic (in the general sense). Note that CL refers to the specific contract
language as defined in (Prisacariu and Schneider, 2007).

CNL Controlled Natural Language

CoCoME Common Component Modelling Example

CPE Computer Processable English (Pulman, 1996)

CSP Communicating Sequential Processes

CTD Contrary-To-Duty

CTP Contrary-To-Permission

CTL Computation Tree Logic

DCG Definite Clause Grammar (Pereira and Warren, 1980)

DRS Discourse Representation Structure

FM Fridge Magnets (guided input method)

118

GLOSSARY OF TERMS 119

Gamestate An object or data structure which encodes the entire state of a game which
is currently in play. Includes such things as players’ points, active rules and past
events.

GF Grammatical Framework (Ranta, 2004)

GHC Glasgow Haskell Compiler

GWT Google Web Toolkit

GPL GNU General Public License. For details visit http://www.gnu.org/licenses/

gpl.html

HPSG Head-driven Phrase Structure Grammar (Pollard and Sag, 1994)

I/O Input / Output

ISP Internet Service Provider

JPA Java Persistence API

JSNI JavaScript Native Interface

kb/s Kilobits per second

KIF Knowledge Interchange Format

LFG Lexical Functional Grammars

LGPL GNU Lesser General Public License. For details visit http://www.gnu.org/

licenses/lgpl.html

LKIF Legal Knowledge Interchange Format

LTL Linear Temporal Logic

MT Machine Translation

NL Natural Language

NLP Natural Language Processing

NP Noun Phrase (part of speech)

OCL Object Constraint Language

OO Object-Oriented

OPP Obligation, Permission and Prohibition

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html

GLOSSARY OF TERMS 120

OWL Web Ontology Language

PENG Processable English (Schwitter, 2002)

POJO Plain Old Java Object

PDL Propositional Dynamic Logic

QoS Quality-of-Service

RACE Attempto Reasoner tool for the ACE language (Fuchs et al., 2008).

RPC Remote Procedure Call

SDL Standard Deontic Logic

SLA Service-Level Agreement

SOA Service-Oriented Architecture

SP Suggest Panel (guided input method)

SWRL Semantic Web Rule Language

TL Temporal Logic

UI User Interface

UML Unified Modelling Language

VP Verb Phrase (part of speech)

XML Extensible Markup Language

Bibliography

Krasimir Angelov. Incremental parsing with parallel multiple context-free grammars.
In Proceedings of the 12th Conference of the European Chapter of the Association for Com-
putational Linguistics (EACL ’09), number April, pages 69–76, Morristown, NJ, USA,
2009. Association for Computational Linguistics.

Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Learn Prolog Now!, volume 7

of Texts in Computing. College Publications, 2006.

Ron Cole, Joseph Mariani, Hans Uszkoreit, Giovanni Batista Varile, Annie Zae-
nen, Antonio Zampolli, and Victor Zue. Survey of the State of the Art in Human
Language Technology, 1997. URL http://www.dfki.de/~{}hansu/HLT-Survey.pdf.

Robert Dale, Hermann Moisl, and H. L. Somers. Handbook of natural language proces-
sing. CRC Press, 2000.

Stephen Fenech, Gordon J. Pace, and Gerardo Schneider. Conflict Analysis of
Deontic Contracts. In Workshop in ICT (WICT ’08). University of Malta, 2008.

Stephen Fenech, Gordon J. Pace, Joseph C. Okika, Anders P. Ravn, and Gerardo

Schneider. On the Specification of Full Contracts. Electronic Notes in Theoretical Com-
puter Science, 253(1):39–55, 2009a.

Stephen Fenech, Gordon J. Pace, and Gerardo Schneider. CLAN: A Tool for Contract
Analysis and Conflict Discovery, volume 5799 of Lecture Notes in Computer Science, pages
90–96. Springer, Berlin, Heidelberg, 2009b.

Stephen Fenech, Gordon J. Pace, and Gerardo Schneider. Automatic Conflict De-
tection on Contracts, volume 5684 of Lecture Notes in Computer Science, pages 200–214.
Springer, Berlin, Heidelberg, 2009c.

Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled English
for Knowledge Representation, volume 5224 of Lecture Notes in Computer Science, pages
104–124. Springer, Berlin, Heidelberg, 2008.

121

http://www.dfki.de/~{}hansu/HLT-Survey.pdf

BIBLIOGRAPHY 122

Reiner Hähnle, Kristofer Johannisson, and Aarne Ranta. An Authoring Tool for In-
formal and Formal Requirements Specifications, volume 2306 of Lecture Notes in Computer
Science, pages 233–248. Springer Berlin Heidelberg, Berlin, Heidelberg, March 2002.

Thomas Hallgren and Aarne Ranta. An extensible proof text editor, volume 1955 of
Lecture Notes in Computer Science, pages 70–84. Springer Verlag, Heidelberg, 2000.

Kristofer Johannisson. Formal and Informal Software Specifications. Phd thesis, Chal-
mers University of Technology and Göteborg University, 2005.

Daniel Jurafsky and James H. Martin. Speech and Language Processing. Pearson Edu-
cation, New Jersey, 2nd edition, 2009.

Kaarel Kaljurand. Attempto Project. http://attempto.ifi.uzh.ch/site/, 2009.
Accessed 21/05/2010.

Szymon Klarman, Rinke Hoekstra, and Marc Bron. Versions and Applicability
of Concept Definitions in Legal Ontologies. In Proceedings of OWL: Experiences and
Directions (OWLED 2008 DC), 2008.

J.-J. Ch. Meyer, F.P.M. Dignum, and R.J. Wieringa. The Paradoxes of Deontic Logic
Revisited: A Computer Science Perspective. Technical Report UU-CS-1994-38, Dept.
of Computer Science, Utrecht University, Utrecht, The Netherlands, 1994.

Gordon J. Pace and Michael Rosner. A Controlled Language for the Specification of
Contracts, volume 5972 of Lecture Notes in Artificial Intelligence. Springer, 2010.

Gordon J. Pace and Gerardo Schneider. Challenges in the Specification of Full Contracts,
volume 5423 of Lecture Notes in Computer Science, pages 292–306. Springer, Berlin,
Heidelberg, 2009.

Gordon J. Pace, Cristian Prisacariu, and Gerardo Schneider. Model Checking
Contracts - a case study. In Namjoshi Kedar and Tomohiro Yoneda, editors, 5th In-
ternational Symposium on Automated Technology for Verification and Analysis (ATVA’07),
number 1, pages 82–97, Tokyo, 2007. Springer.

R. S. Patil, R. E. Fikes, Peter F. Patel-Schneider, D. McKay, T. Finin, T. Gruber, and

R. Neches. The DARPA Knowledge Sharing Effort: Progress Report. In KR92 (Pro-
ceedings of the Third International Conference on Knowledge Representation and Reasoning),
Palo Alto, 1992. Morgan Kaufmann.

Adam Pease and William Murray. An English to logic translator for ontology-based
knowledge representation languages. In International Conference on Natural Language
Processing and Knowledge Engineering, pages 777–783. IEEE, 2003.

http://attempto.ifi.uzh.ch/site/

BIBLIOGRAPHY 123

Fernando C. N. Pereira and David H. D. Warren. Definite Clause Grammars for
Language Analysis — A Survey of the Formalism and a Comparison with Augmented
Transition Networks. Artificial intelligence, 13(2):231–278, 1980.

Mark E. Phair and Adam Bliss. PerlNomic: Rule Making and Enforcement in Digital
Shared Spaces. In Online Deliberation 2005 / DIAC-2005, Stanford, CA, USA, 2005.

Carl Pollard and Ivan A. Sag. Head-driven phrase structure grammar. University of
Chicago Press, Chicago, 1994.

Cristian Prisacariu and Gerardo Schneider. A Formal Language for Electronic
Contracts, volume 4468 of Lecture Notes in Computer Science, pages 174–189. Springer,
Berlin, Heidelberg, 2007.

Stephen G. Pulman. Controlled Language for Knowledge Representation. In Pro-
ceedings of the first international workshop on controlled language applications, Katholieke
Universiteit, pages 233–242, 1996.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar Formalism.
Journal of Functional Programming, 14(02):145–189, 2004.

Aarne Ranta. The GF Resource Grammar Library. Linguistic Issues in Language Techno-
logy, 2(2), 2009.

Aarne Ranta and Krasimir Angelov. Implementing Controlled Languages in GF. In
CNL-2009, CEUR Workshop Proceedings, 2009.

Rolf Schwitter. English as a Formal Specification Language. In Proceedings of the
Thirteenth International Workshop on Database and Expert Systems Applications (DEXA
2002), pages 228–232, Aix-en-Provence, France, 2002.

Stuart M. Shieber. The design of a computer language for linguistic information.
Proceedings of the 22nd annual meeting on Association for Computational Linguistics, pages
362–366, 1984.

Peter Suber. Nomic: A Game of Self-Amendment. Peter Lang Publishing, 1990.

Bernard Vauquois. A survey of formal grammars and algorithms for recognition and
transformation in mechanical translation. In IFIP Congress (2), pages 1114–1122, 1968.

Gerard A. W. Vreeswijk. Formalizing Nomic: working on a theory of communication
with modifiable rules of procedure. Technical Report CS 95-02, Dept. of Computer
Science, University of Limburg, Maastricht, The Netherlands, 1995.

WebALT Consortium. Final Report of the WebALT Project, 2007. URL http://webalt.

math.helsinki.fi/.

http://webalt.math.helsinki.fi/
http://webalt.math.helsinki.fi/

	Introduction
	Background
	Natural and formal languages
	Contracts and ambiguities

	Motivation
	Electronic contracts and their use
	The language problem
	Nomic

	Project aims
	Report overview

	Contract logic representations
	What is a contract?
	Deontic logic
	OPP-logic
	Paradoxes

	Issues
	Action-based vs. state-based
	Reparation clauses
	Internal and external choice
	Temporal aspects

	Comparison of works
	Chapter summary

	Controlled natural languages
	Processing natural languages
	The template approach

	Controlled natural languages
	Examples of CNLs

	Unification-based grammar formalisms
	The Grammatical Framework
	Abstract & concrete syntaxes
	Linearisation-centric records
	Input possibilities
	Resource Grammar Library
	Projects using GF
	GF and CNLs

	Chapter summary

	BanaNomic
	The game of Nomic
	Game objectives
	Flavours of Nomic
	Attempts at formalising Nomic
	PerlNomic

	BanaNomic
	The setting
	Rules of the rainforest

	Chapter summary

	A contract logic for Nomic
	Formal grammar
	Contract examples
	Semantics
	Deontic inference and precedence
	Choice
	Permanent contracts
	Timely contracts
	The generic player
	Rule manipulation

	Comparison with other works
	Chapter summary

	The language of BanaNomic
	Designing the CNL
	Template-based linearisations
	Semantic disambiguation
	Punctuation
	Problem areas

	Grammar design in GF
	Abstract syntax
	Concrete English syntax

	Chapter summary

	Implementation
	System overview
	Client-side web application
	Google Web Toolkit
	Grammatical Framework

	Server-side backend & game evaluator
	Java backend
	Haskell game evaluator

	Implementation notes
	Hosting setup
	Web applications & user interface

	Development issues & unforeseen problems
	Logic
	Language
	User interface

	Chapter summary

	Evaluation
	Methodology
	What answers are we seeking?
	The questions we asked and how
	Evaluation period

	In-game feedback
	Average overall ratings
	User ratings over time
	Enactment of new rules
	Complete turns and passes

	Post-game questionnaire
	Discussion
	The contract logic and the self-amending game
	Language aspect
	Overall reflections on the game
	Limitations with the methodology

	Chapter summary

	Conclusions
	Reflections on the project
	Project overview
	Summary of results

	Points of limitation
	Natural language
	Contract logic
	Nomic
	Evaluation
	Other observations

	Future work
	Unrealised ideas
	Ultimate goals

	Closing remarks

	User guide
	The basics
	What's this game all about?
	The setting
	Playing your turn
	Composing rules
	Feedback
	The initial rules
	Some gameplay tips

	Other issues
	What's b'clock?
	How actions are processed
	How rules are processed
	Permission, obligation and prohibition
	Sometimes & always
	Fixed laws

	Technical issues
	Browser compatibilities
	Bugs and glitches

	Game transcripts
	Initial rules
	Turn histories
	Banana Bonanza
	Potassium Paradise

	Final summaries
	Banana Bonanza
	Potassium Paradise

	Interesting behaviour

	Evaluation forms & results
	Evaluators
	In-game feedback
	Feedback form
	Feedback responses

	Post-game questionnaire
	Questionnaire form
	Questionnaire responses

	Selected code fragments
	Game evaluator
	Contract logic grammar
	XML gamestate representation

	Grammatical Framework
	Abstract contract grammar
	complete() JavaScript extension

	Glossary of terms
	Bibliography

